Sterne: T_eff, L, r bestimmen < Astronomie < Naturwiss. < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 16:18 Fr 18.01.2013 | Autor: | stffn |
Aufgabe | Bestimmen Sie die Entfernung, die abs. bolometrische Helligkeit, die effektive Temperatur, den Radius und die Leuchtkraft von Sirius.
Gegeben:
Parallaxe=0,3806"
[mm] m_v=-1,5mag
[/mm]
[mm] \lambda_{max}=263nm
[/mm]
B.C.=-0,08
R_Sonne=6,96*10^10 cm
[mm] M_{bol,Sonne}=4,74mag
[/mm]
[mm] \sigma=5,67*10^{-5} erg*cm^{-2}*K^{-4}*s^{-1} [/mm] |
Hallo zusammen,
ich habe bereits die Entfernung und die absolute bolometrische Hellogkeit bestimmt, hänge jetzt aber bei der Temperatur. Weiß auch garnicht wie ich daran gehen soll, oder ob ich vielleicht sogar mit der Leuchtkraft anfangen muss.
Ich werde wahrscheinlich das Stefan-Boltzmann-Gesetz brauchen, aber da sind ja sowohl Leuchtkraft, als auch eff. Temp. und Radius drinnen enthalten. Also muss es ja auch einen anderen Ansatzpunkt geben. Vielleicht irgendwas mit den Helligkeiten und dem Zusammenhang von Leuchtkraft und scheinbarer Helligkeit?
Ich komme echt nicht drauf, Danke für die hilfe!!
Viele Grüße
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:46 Sa 19.01.2013 | Autor: | Josef |
Hallo,
"Ähnlich wie bei Eisen kann man auch bei Sternen aus der Glühfarbe auf die ungefähre Oberflächentemperatur schließen. Allerdings gilt dies nur für Sterne, die den wesentlichen Teil ihrer Strahlung in den uns sichtbaren Wellenlängen von 400 bis 700 Nanometer aussenden. Um auch heißere oder kühlere Sterne - mit Strahlungsmaxima im ultravioletten oder infraroten Spektralbereich - zu erfassen, muss man entweder die Farbskala theoretisch in diese Spektralbereiche ausdehnen oder aber auf die für alle Spektralbereiche gültigen Gesetze der Wärmestrahlung zurückgreifen. Dabei ordnet man den entsprechenden Objekten mittels des Stefan-Boltzmann-Gesetzes oder des Wien'schen Verschiebungsgesetzes eine Temperatur zu. Es zeigt sich, dass die Oberflächentemperaturen (Effektivtemperaturen) der meisten Sterne kontinuierlich einen Bereich von 50 000 K bis 2000 K überdecken. Die Obergrenze bilden die sehr massereichen heißen Sterne, die Untergrenze wird durch die extrem massearmen oder extrem ausgedehnten kühlen Sterne markiert.
Die Annahme thermischer Strahlung erlaubt oft aber nur ein ungefähres Abschätzen der tatsächlichen Oberflächentemperatur eines Sterns. Eine exaktere und zuverlässigere Ordnung erhält man durch einen Vergleich des jeweiligen Sternspektrums mit international vereinbarten Referenzspektren ausgewählter Sterne. Sterne, deren gemessenes Spektrum einem Referenzspektrum entspricht, werden dann in die dadurch repräsentierte Spektralklasse eingeordnet."
Quelle: Der Brockhaus; (c) wissenmedia GmbH, 2010
Viele Grüße
Josef
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:54 Sa 19.01.2013 | Autor: | Josef |
Hallo,
"Die Einteilung der scheinbaren Helligkeit in sechs Größenklassen geht ursprünglich auf Ptolemäus zurück. Die scheinbare Helligkeit wird in Größenklassen, mit einem m (lateinisch magnitudo: Größe) hinter der Zahl oder als hochgestelltes m, angegeben.
Der britische Astronom Norman R. Pogson führte 1854 eine Skala ein, auf der die scheinbare Helligkeit von Sternen sich um den Faktor von 2,512 unterscheiden. Mit Hilfe der Photometrie, der modernen Methode der Helligkeitsmessung, wurde die Skala für sehr helle Sterne nach unten hin erweitert.
Der für das menschliche Auge hellste Stern ist die Sonne. Ihre Größenklasse beträgt -26m,86. Der hellste Stern Sirius besitzt eine scheinbare Helligkeit von -1m,4. Die scheinbare Helligkeit ist umso größer, je kleiner ihr Wert ist.
Die absolute Helligkeit beschreibt den Zustand, den Durchmesser und die Temperatur eines Sterns. Sie wird mit einem M angegeben und entspricht der scheinbaren Helligkeit, die ein Stern besäße, wenn er sich in einer Entfernung von zehn Parsec zur Erde befände. Dadurch erhält man ein von der Entfernung unabhängiges Maß der Helligkeit. Dies ermöglicht den Vergleich unterschiedlicher Sterne bezüglich ihrer Helligkeit.
Ist die absolute Helligkeit eines Sterns bekannt, so kann man aus der Differenz von der scheinbaren Helligkeit und der absoluten Helligkeit (Entfernungsmodul: m - M), bei Berücksichtigung der interstellaren Absorption (Staub- und Gaswolken), die Entfernung des Sterns bestimmen."
Microsoft® Encarta® Enzyklopädie Professional 2003 © 1993-2002 Microsoft Corporation. Alle Rechte vorbehalten.
Viele Grüße
Josef
|
|
|
|