Stetige Funktionen < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Es seien f,g: [mm] \IR \to \IR [/mm] stetige Funtkionen mit f(x)=g(x) für alle x aus IQ. Zeigen Sie: Dann gilt bereits f(x)=g(x) für alle x aus [mm] \IR. [/mm] Hinweis: Führen sie einen Widerspruchsbeweis. Dabei benutzen Sie, dass [mm] \IQ [/mm] dicht in [mm] \IR [/mm] liegt.
|
Hallo!
Mein Ansatz:
Seien f,g stetige Funktionen mit f(x)=g(x) für alle x aus [mm] \IQ. [/mm]
Angenommen es gilt f(x) ungleich g(x) für alle x aus [mm] \IR. [/mm] Da [mm] \IQ [/mm] dicht in [mm] \IR [/mm] liegt existiert zu x,y mit x<y aus [mm] \IR [/mm] ein r aus [mm] \IQ [/mm] mit x<r<y
Könnt ihr mir weiterhelfen, wie es da weitergeht?
Vielen Dank
Gruß
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 14:06 Mi 25.01.2006 | Autor: | djmatey |
Hallo,
es gelte also
f(x)=g(x) [mm] \forall [/mm] x [mm] \in \IQ [/mm] mit stetigen f,g.
Jetzt der Widerspruchsbeweis:
Annahme:
[mm] \exists x_{0} \in \IR: f(x_{0}) \not= g(x_{0})
[/mm]
Da [mm] \IQ [/mm] dicht in [mm] \IR [/mm] liegt, weiß man dass
[mm] \exists (x_{n})_{n \in \IN} [/mm] mit [mm] x_{n} \to x_{0} [/mm] und [mm] x_{n} \in \IQ \forall [/mm] n [mm] \in \IN
[/mm]
Dann gilt ja
[mm] f(x_{0}) [/mm] = [mm] f(\limes_{n\rightarrow\infty}x_{n}) [/mm] = [mm] \limes_{n\rightarrow\infty}f(x_{n}) \not= \limes_{n\rightarrow\infty}g(x_{n}) [/mm] = [mm] g(\limes_{n\rightarrow\infty}x_{n}) [/mm] = [mm] g(x_{0})
[/mm]
wobei der Limes wegen der Stetigkeit aus f bzw. g heraus gezogen werden darf.
Es gilt aber ja nach Voraussetzung, dass
[mm] f(x_{n}) [/mm] = [mm] g(x_{n}) \forall [/mm] n [mm] \in \IN,
[/mm]
und da liegt der Widerspruch, denn nun haben die gleichen Folgen
[mm] (f(x_{n}))_{n \in \IN} [/mm] und [mm] (g(x_{n}))_{n \in \IN}
[/mm]
verschiedene Grenzwerte, was nicht sein kann.
Liebe Grüße,
djmatey.
|
|
|
|