www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionalanalysis" - Stetige Funktionen
Stetige Funktionen < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetige Funktionen: Ansatz oder Lösung
Status: (Frage) beantwortet Status 
Datum: 05:53 Mo 07.12.2009
Autor: Julia_20

Hallo Leute,

Ich habe eine Aufgabe  , die ich alleine nicht schaffen kann , da ich in der Vorlesung nicht da war habe ich keine Ahnung von Stetigen Funktionen deswegen ich bitte um eure Hilfe bei folgender Aufgabe :

Sei D [mm] \subseteq \IR [/mm] und seien f,g : D [mm] \to \IR [/mm] stetige Funktionen. Wir definieren h : D [mm] \to \IR [/mm] durch h(x) := max [mm] \{f(x),g(x)\} [/mm] .Zeigen sie , dass h stetig ist .

LG Julia

        
Bezug
Stetige Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 08:00 Mo 07.12.2009
Autor: fred97

Tipp: für a,b [mm] \in \IR [/mm] gilt:

                  $max [mm] \{a,b \} [/mm] = [mm] \bruch{a+b+|a-b|}{2}$ [/mm]

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]