www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Stetige funktionen
Stetige funktionen < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetige funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:23 So 19.10.2014
Autor: xxela89xx

Aufgabe
a) Gibt es eine stetige funktion f:R-> R mit f(0)=1 und f'(x)= 1/x für alle x>0?
b) gibt es eine stetige funktion g:R->R mit g(0)=1 und g'(x)= 1/ [mm] \wurzel{x} [/mm] für alle x>0?

Hallo,

ich soll Beispiele dafür aufschreiben oder die Nichtexistenz begründen. Könntet ihr mir helfen?

Gruß

        
Bezug
Stetige funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:40 So 19.10.2014
Autor: Fulla

Hallo xxela89xx,

ich weise mal auf unsere Forenregeln hin: Wir sind keine Maschine, die fertige Lösungen ausspuckt. Du solltest schon eigene AnsätzeÜberlegungen posten.

> a) Gibt es eine stetige funktion f:R-> R mit f(0)=1 und
> f'(x)= 1/x für alle x>0?

Ich gehe mal davon aus, dass [mm]f\colon \mathbb R\longrightarrow\mathbb R[/mm] bedeutet, dass die Funktion auf ganz [mm]\mathbb R[/mm] definiert sein soll.
Zunächst: Welche Funktionen kennst du denn, für die [mm]f^\prime (x)=\frac 1x[/mm] ist? Gilt für eine dieser Funktionen [mm]f(0)=1[/mm]? Ist diese auf ganz [mm]\mathbb R[/mm] definiert?

> b) gibt es eine stetige funktion g:R->R mit g(0)=1 und
> g'(x)= 1/ [mm]\wurzel{x}[/mm] für alle x>0?

Stell dir dieselben Fragen, wie oben.

> Hallo,

>

> ich soll Beispiele dafür aufschreiben oder die
> Nichtexistenz begründen. Könntet ihr mir helfen?

Solltest du alle Fragen oben mit 'ja' beantworten können, hast du eine/die gesuchte Funktion gefunden.
Sollte ein 'nein' dabei sein, begründe dies und du bist fertig.


Lieben Gruß,
Fulla

Bezug
                
Bezug
Stetige funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:47 So 19.10.2014
Autor: xxela89xx

Hi,

also, ich habe mir für die a) log(x)+1 überlegt, und für die b) [mm] 2*\wurzel{log(x)}+1 [/mm] überlegt, jedoch wusste ich nicht, ob das eine stetige Funktion ist und, ob das geht.

Gruß

Bezug
                        
Bezug
Stetige funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:06 So 19.10.2014
Autor: Fulla

Hallo zurück!

> Hi,

>

> also, ich habe mir für die a) log(x)+1 überlegt, und für

Ich prüfe mal. Also, es ist [mm]f(x)=\ln(x)+1[/mm] (ich gehe davon aus, dass du den natürlichen Logarithmus meinst).
[mm]f^\prime(x)=\frac 1x[/mm] [ok] Falls es so eine Funktion [mm]f[/mm] gibt, dann ist (zumindest für [mm]x>0[/mm]) [mm]f(x)=\ln(x)+c[/mm] für ein [mm]c\in\mathbb R[/mm].
[mm]f(0)=\ldots[/mm] ups, [mm]\ln(0)[/mm] ist nicht definiert!

> die b) [mm]2*\wurzel{log(x)}+1[/mm] überlegt, jedoch wusste ich

Test:
[mm]f^\prime(x)=\frac{1}{x\cdot \ln(x)}[/mm] [notok]
[mm]f(0)[/mm] ist auch nicht definiert


Beide deiner Funktionen sind nur auf [mm]\mathbb R^+[/mm] definiert. Ich weiß nicht, wie genau dein Prof das [mm]f\colon\mathbb R\longrightarrow\mathbb R[/mm] nimmt, denn für [mm]x<0[/mm] kriegst du bei beiden Aufgaben Probleme. Bei der Funktion, die es gibt (das ist nur bei einer Teilaufgabe der Fall) musst du dir dann ggf. mit einer stückweise definierten Funktion behelfen...

> nicht, ob das eine stetige Funktion ist und, ob das geht.

Ob die Funktion(en), die du gefunden hast stetig sind, solltest du aber schon begründen können... Da gibt es z.B. den Satz, dass die Komposition stetiger Funktionen stetig ist.


Lieben Gruß,
Fulla

Bezug
                                
Bezug
Stetige funktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:32 Mo 20.10.2014
Autor: xxela89xx

Vielen Dank für die ausführliche Antwort!

Liebe Grüße

Bezug
        
Bezug
Stetige funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 07:59 Mo 20.10.2014
Autor: fred97


> a) Gibt es eine stetige funktion f:R-> R mit f(0)=1 und
> f'(x)= 1/x für alle x>0?
>  b) gibt es eine stetige funktion g:R->R mit g(0)=1 und
> g'(x)= 1/ [mm]\wurzel{x}[/mm] für alle x>0?
>  Hallo,
>  
> ich soll Beispiele dafür aufschreiben oder die
> Nichtexistenz begründen. Könntet ihr mir helfen?

ZU a): Wir nehmen an, es gäbe eine solche Funktion. Für x>0 gilt dann f(x)= [mm] \ln(x)+c. [/mm] Da f stetig auf [mm] \IR [/mm] sein soll, ist f auch stetig in 0, also gilt:

   [mm] 1=f(0)=\limes_{x\rightarrow 0+0}f(x). [/mm]

Wenn Dir nun klar ist, wie [mm] \limes_{x\rightarrow 0+0}f(x) [/mm] ausfällt, sollte klar sein, dass wir einen Widerspruch erhalten.

Zu b): Sei g: [mm] \IR \to \IR [/mm] eine Funktion mit g(0)=1 und g'(x)= 1/ $ [mm] \wurzel{x} [/mm] $  für x>0.

Dann haben wir, mit einem c [mm] \in \IR: g(x)=2\wurzel{x}+c [/mm] für x>0

Überlege Dir:

1. es ist c=1, also  [mm] g(x)=2\wurzel{x}+1 [/mm] für x [mm] \ge [/mm] 0

2. [mm] 2\wurzel{x}+1 [/mm]  kannst Du  stetig auf (- [mm] \infty,0) [/mm] fortsetzen (wie ?)

FRED

>  
> Gruß


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]