Stetigkeit < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 00:18 Sa 05.03.2016 | Autor: | sandroid |
Aufgabe | Die Funktion [mm] $f(x,y):=\bruch{xy^2}{x^2 + y^2}$ [/mm] für [mm] $(x,y)\neq(0,0)$, [/mm] $f(0,0):=0$ ist in (0,0) stetig. |
Hallo,
ich habe die folgende Lösung angefertigt, mit der Bitte, dass sie jemand kontrollieren möge. Ich fühlte mich nämlich noch nicht so sicher damit.
Zeige Stetigkeit mit dem Epsilon-Delta Kriterium:
Sei [mm] $\epsilon [/mm] > 0$ beliebig. Wähle [mm] $\delta [/mm] := [mm] \epsilon$. [/mm] Sei $(x,y) [mm] \in \mathbb{R}^2$ [/mm] beliebig mit [mm] $\parallel [/mm] (x,y) - (0,0) [mm] \parallel [/mm] < [mm] \delta$. [/mm] Ich kann hier die Maximumsnorm verwenden, da auf [mm] $\mathbb{R}^2$ [/mm] alle Normen äquivalent sind. Dann wird also vorausgesetzt $|x| < [mm] \delta$ [/mm] und $|y| < [mm] \delta$. [/mm] Es gilt:
$|f(x,y)| = [mm] |\bruch{xy^2}{x^2 + y^2}| [/mm] = [mm] \bruch{|x|*|y|^2}{|x^2 + y^2|} \leq \bruch{|x|*|y|^2}{|y|^2}=|x|<\delta=\epsilon$.
[/mm]
Da [mm] $\epsilon$ [/mm] beliebig war, folgt daraus die Stetigkeit. [mm] $\whitebox$
[/mm]
Nun noch eine Frage, kann ich alternativ die Stetigkeit auch über die Definition zeigen? Ich komme dann auf den folgenden Grenzwert, bei dem ich nicht weiter kome.
[mm] $\limes_{n \to \infty}\bruch{x_n * y_n^2}{x_n^2 + y_n^2}$ [/mm] wobei die beliebigen Folgen [mm] $x_n \to [/mm] 0$ und [mm] $y_n \to [/mm] 0$ konvergieren.
Vielen Dank fürs korrigieren und ggf. für eine Anregung.
|
|
|
|
Hallo sandroid,
das sieht alles gut aus. Kleiner Tipp zur Folgenstetigkeit steht unten.
> Die Funktion [mm]f(x,y):=\bruch{xy^2}{x^2 + y^2}[/mm] für
> [mm](x,y)\neq(0,0)[/mm], [mm]f(0,0):=0[/mm] ist in (0,0) stetig.
> Hallo,
>
> ich habe die folgende Lösung angefertigt, mit der Bitte,
> dass sie jemand kontrollieren möge. Ich fühlte mich
> nämlich noch nicht so sicher damit.
>
> Zeige Stetigkeit mit dem Epsilon-Delta Kriterium:
>
> Sei [mm]\epsilon > 0[/mm] beliebig. Wähle [mm]\delta := \epsilon[/mm]. Sei
> [mm](x,y) \in \mathbb{R}^2[/mm] beliebig mit [mm]\parallel (x,y) - (0,0) \parallel < \delta[/mm].
> Ich kann hier die Maximumsnorm verwenden, da auf
> [mm]\mathbb{R}^2[/mm] alle Normen äquivalent sind. Dann wird also
> vorausgesetzt [mm]|x| < \delta[/mm] und [mm]|y| < \delta[/mm]. Es gilt:
>
> [mm]|f(x,y)| = |\bruch{xy^2}{x^2 + y^2}| = \bruch{|x|*|y|^2}{|x^2 + y^2|} \leq \bruch{|x|*|y|^2}{|y|^2}=|x|<\delta=\epsilon[/mm].
>
> Da [mm]\epsilon[/mm] beliebig war, folgt daraus die Stetigkeit.
Ja, alles richtig.
> Nun noch eine Frage, kann ich alternativ die Stetigkeit
> auch über die Definition zeigen? Ich komme dann auf den
> folgenden Grenzwert, bei dem ich nicht weiter kome.
>
> [mm]\limes_{n \to \infty}\bruch{x_n * y_n^2}{x_n^2 + y_n^2}[/mm]
> wobei die beliebigen Folgen [mm]x_n \to 0[/mm] und [mm]y_n \to 0[/mm]
> konvergieren.
>
> Vielen Dank fürs korrigieren und ggf. für eine Anregung.
Ein kleiner Umweg, mit dem der Grenzwert m.E. leichter "zu sehen" ist:
Sei [mm] r_n=\wurzel{x_n^2+y_n^2}
[/mm]
Dann ist [mm]\limes_{n \to \infty}\bruch{x_n * y_n^2}{x_n^2 + y_n^2}=\lim_{n\to\infty}\br{x_n*(r_n^2-x_n^2)}{r_n^2}=\lim_{n\to\infty}\left(x_n-x_n\br{x_n^2}{r_n^2}\right)=\cdots[/mm]
Zu beachten sind a) [mm] |x_n|\le|r_n| [/mm] und b) die Grenzwertsätze. Lässt sich der letztgenannte Grenzwert aufspalten oder nicht?
Grüße
reverend
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 01:55 Sa 05.03.2016 | Autor: | sandroid |
Vielen Dank, der Tipp mit dem Grenzwert hat mir geholfen.
Ich denke doch, dass man den aufspalten kann, und dann $0-0=0$ heraus kommt.
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 10:13 Sa 05.03.2016 | Autor: | fred97 |
> Die Funktion [mm]f(x,y):=\bruch{xy^2}{x^2 + y^2}[/mm] für
> [mm](x,y)\neq(0,0)[/mm], [mm]f(0,0):=0[/mm] ist in (0,0) stetig.
> Hallo,
>
> ich habe die folgende Lösung angefertigt, mit der Bitte,
> dass sie jemand kontrollieren möge. Ich fühlte mich
> nämlich noch nicht so sicher damit.
>
> Zeige Stetigkeit mit dem Epsilon-Delta Kriterium:
>
> Sei [mm]\epsilon > 0[/mm] beliebig. Wähle [mm]\delta := \epsilon[/mm]. Sei
> [mm](x,y) \in \mathbb{R}^2[/mm] beliebig mit [mm]\parallel (x,y) - (0,0) \parallel < \delta[/mm].
> Ich kann hier die Maximumsnorm verwenden, da auf
> [mm]\mathbb{R}^2[/mm] alle Normen äquivalent sind. Dann wird also
> vorausgesetzt [mm]|x| < \delta[/mm] und [mm]|y| < \delta[/mm]. Es gilt:
>
> [mm]|f(x,y)| = |\bruch{xy^2}{x^2 + y^2}| = \bruch{|x|*|y|^2}{|x^2 + y^2|} \leq \bruch{|x|*|y|^2}{|y|^2}=|x|<\delta=\epsilon[/mm].
>
> Da [mm]\epsilon[/mm] beliebig war, folgt daraus die Stetigkeit.
> [mm]\whitebox[/mm]
>
> Nun noch eine Frage, kann ich alternativ die Stetigkeit
> auch über die Definition zeigen? Ich komme dann auf den
> folgenden Grenzwert, bei dem ich nicht weiter kome.
>
> [mm]\limes_{n \to \infty}\bruch{x_n * y_n^2}{x_n^2 + y_n^2}[/mm]
> wobei die beliebigen Folgen [mm]x_n \to 0[/mm] und [mm]y_n \to 0[/mm]
> konvergieren.
>
> Vielen Dank fürs korrigieren und ggf. für eine Anregung.
Meine Anregung lautet: Polarkoordinaten.
Mit $x=r [mm] cos(\phi) [/mm] , y=r [mm] sin(\phi)$ [/mm] ergibt sich
$ |f(x,y)-f(0,0)|=|r [mm] cos(\phi) sin^2(\phi)| \le r=\wurzel{x^2+y^2}=||(x,y)||_2$
[/mm]
FRED
|
|
|
|