www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Stetigkeit
Stetigkeit < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit: Frage
Status: (Frage) beantwortet Status 
Datum: 13:02 Sa 23.04.2005
Autor: jenecky

Hallo Matheraum,
ich soll zeigen ob die folgende Funktion [mm] f(x)=\wurzel[3]{x^2* \wurzel{x+1}} [/mm] in ihrem Definitionsbereich stetig ist, nur ist es mir ein Rätsel wie das bei solchen Funktionen geht!? Bitte um Hilfe!
jenecky

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 13:25 Sa 23.04.2005
Autor: Christian

Hallo.

> Hallo Matheraum,
>  ich soll zeigen ob die folgende Funktion
> [mm]f(x)=\wurzel[3]{x^2* \wurzel{x+1}}[/mm] in ihrem
> Definitionsbereich stetig ist, nur ist es mir ein Rätsel
> wie das bei solchen Funktionen geht!? Bitte um Hilfe!
>  jenecky
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Das kommt ganz darauf an, wie man sich den Definitionsbereich wählt...
Aber prinzipiell mußt Du erstmal nur nachsehen, wo es für die Funktion denn kritisch werden könnte, d.h. wo evtl. Sprungstellen, Definitionslücken etc. auftauchen könnten.
Bei dieser Funktion ist das wohl bei jedem x links von -1 der Fall, da dort die innere Wurzel dann nicht mehr definiert ist.
Nehmen wir die -1 allerdings raus, d.h., betrachten wir das Intervall [mm] $(-1,\infty)$, [/mm] so ist die Funktion völlig harmlos, denn das Intervall ist offen, und auf offenen Intervallen verkettete stetige Funktionen sind selbst wieder stetig. (Ich weiß nicht, ob ihr voraussetzen dürft, daß die Wurzelfunktion stetig ist).
Jetzt müssen wir also nur noch den Punkt -1 verarzten.
Der ist aber unproblematisch, denn falls x gegen -1 geht, geht die Wurzel innendrin ganz artig gegen 0 und [mm] x^2 [/mm] geht gegen 1, daher geht die Gesamte Funktion für x gegen -1 gegen 0=f(-1), also ist f auch dort stetig.

Gruß,
Christian

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]