www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Stetigkeit und differenzierbar
Stetigkeit und differenzierbar < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit und differenzierbar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:49 Mo 15.06.2009
Autor: Piatty

Aufgabe
Sei f: [mm] \IR \to \IR [/mm] gegeben durch [mm] f(x)=\begin{cases} x, & \mbox{für } x \le 0\mbox{ } \\ x^{2}, & \mbox{für } x>0 \mbox{ } \end{cases} [/mm]
Zeige, dass f stetig auf [mm] \IR [/mm] ist, aber nicht differenzierbar in x=0

Ich habe keine Ahnung wie ich dies zeigen soll... Ich hoffe ihr könnt mir helfen.
Danke schonmal

        
Bezug
Stetigkeit und differenzierbar: Antwort
Status: (Antwort) fertig Status 
Datum: 11:03 Mo 15.06.2009
Autor: steppenhahn

Hallo!

> Sei f: [mm]\IR \to \IR[/mm] gegeben durch [mm]f(x)=\begin{cases} x, & \mbox{für } x \le 0 \\ x^{2}, & \mbox{für } x >0 \end{cases}[/mm]
>  
>  Zeige, dass f stetig auf [mm]\IR[/mm] ist, aber nicht
> differenzierbar in x=0

Es steht ja im Grunde da, was zu tun ist. Da die Funktionen x und [mm] x^{2} [/mm] auf ganz [mm] \IR [/mm] stetig sind, muss nur untersucht werden, was an der Stelle 0 passiert. Dort musst du also prüfen, ob der linksseitige Grenzwert von f(x) für x [mm] \to [/mm] 0- mit dem rechtsseitigen Grenzwert f(x) für x [mm] \to [/mm] 0+ übereinstimmt und insbesondere mit dem Funktionswert an der Stelle übereinstimmt. Zeige also:

1. Der Grenzwert von f(x) bei x=0 existiert, d.h. [mm] $\limes_{x\rightarrow 0-}f(x) [/mm] = [mm] \limes_{x\rightarrow 0+}f(x) [/mm] = [mm] \limes_{x\rightarrow 0}f(x)$ [/mm]
2. Es gilt $f(0) = [mm] \limes_{x\rightarrow 0}f(x)$. [/mm]

Für die Differenzierbarkeit ist zunächst genauso zu schlussfolgern, dass x und [mm] x^{2} [/mm] auf ganz [mm] \IR [/mm] differenzierbar sind, wir müssen also nur am Übergang prüfen, ob es Probleme gibt. Anschaulich ist eine Funktion an einer Stelle nicht differenzierbar, wenn die Steigungen nicht reibungslos ineinander übergehen. Wir müssen also nachsehen, ob der Differenzialquotient für h [mm] \to [/mm] 0+ (von rechts) und [mm] h\to [/mm] 0-  (von links) dieselben Werte annimmt, d.h überprüfe, ob

[mm] $\lim_{h\to 0-}\bruch{f(x+h)-f(x)}{h} [/mm] = [mm] \lim_{h\to 0+}\bruch{f(x+h)-f(x)}{h}$ [/mm]

Beachte bei beiden Aufgabem, dass beim Nähern der Null von links du die Funktion x benutzen musst, beim Nähern von rechts [mm] x^{2} [/mm] (siehe Funktionsvorschrift).

Grüße, Stefan.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]