Stochastische Konvergenz < stoch. Analysis < Stochastik < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Sei [mm] (Z_{n})_{n\in\IN} [/mm] eine Folge von Zufallsvariablen, die stochastisch gegen eine Konstante c konvergiert. Zeige, dass dann für jede stetige Funktion [mm] g:\IR\to\IR [/mm] die Folge [mm] (g(Z_{n}))_{n\in\IN} [/mm] stochastisch gegen g(c) konvergiert! |
Hallo!
Ich möchte euch bitten, einen kritischen Blick auf meine Lösung zu werfen:
Mir ist gegeben, dass [mm] (Z_{n})_{n\in\IN} [/mm] stochastischen gegen c konvergiert, d.h. für alle [mm] \varepsilon [/mm] > 0 gilt:
[mm] $\IP(|X_{n}-c|\ge \epsilon) [/mm] = [mm] \IP(\{\omega\in\Omega:|X_{n}(\omega) - c|\ge \varepsilon\}) \to [/mm] 0$
Nun habe ich noch, dass g stetig ist, d.h. [mm] $\forall x_{0}\in\IR$ [/mm] :
[mm] $\forall \varepsilon [/mm] > 0 [mm] \exists \delta [/mm] > 0: [mm] \forall x\in\IR \mbox{ mit } |x_{0}-x|<\delta \Rightarrow |f(x)-f(x_{0})| [/mm] < [mm] \epsilon$
[/mm]
-------
Ich muss ja zeigen, dass
[mm] $\IP(|g(X_{n})-g(c)|\ge \epsilon) [/mm] = [mm] \IP(\{\omega\in\Omega:|g(X_{n}(\omega) )- g(c)|\ge \varepsilon\}) \to [/mm] 0$
gilt, also dachte ich mir, ich assoziiere [mm] $X_{n}(\omega) [/mm] = [mm] x\in\IR$ [/mm] und [mm] $x_{0} [/mm] = c$, damit ich die Stetigkeit von oben benutzen kann (also dass man sieht, dass es gilt). Dann ist nämlich
[mm] \IP(\{\omega\in\Omega:|g(X_{n}(\omega) )- g(c)|\ge \varepsilon\}) [/mm] = [mm] \IP(\{x\in\IR:|g(x)- g(x_{0})|\ge \varepsilon\})
[/mm]
(bzw. für die x, die von [mm] X_{n}(\omega) [/mm] erzeugt werden, aber ich will es ja nachher eh' wieder rücksubstituieren).
Nun dachte ich, daraus folgern zu können: Da die Gleichung in der Stetigkeit ja nicht gilt, muss die Menge [mm] \{x\in\IR:|g(x)- g(x_{0})|\ge \varepsilon\} [/mm] gerade der Menge [mm] \{x\in\IR:|x- x_{0}|\ge \delta\}
[/mm]
entsprechen, also ist:
[mm] \IP(\{\omega\in\Omega:|g(X_{n}(\omega) )- g(c)|\ge \varepsilon\}) [/mm] = [mm] \IP(\{\omega\in\Omega:|X_{n}(\omega) - c|\ge \delta\}) \to [/mm] 0.
Dieses [mm] \delta, [/mm] das hängt doch aber von [mm] \varepsilon [/mm] und c ab, oder? Ist das schlimm? Eigentlich nicht, weil beide konstant sind, oder?
Vielen Dank für Eure Hilfe,
Stefan.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 12:25 Mi 02.12.2009 | Autor: | felixf |
Moin Stefan!
> Sei [mm](Z_{n})_{n\in\IN}[/mm] eine Folge von Zufallsvariablen, die
> stochastisch gegen eine Konstante c konvergiert. Zeige,
> dass dann für jede stetige Funktion [mm]g:\IR\to\IR[/mm] die Folge
> [mm](g(Z_{n}))_{n\in\IN}[/mm] stochastisch gegen g(c) konvergiert!
>
> Ich möchte euch bitten, einen kritischen Blick auf meine
> Lösung zu werfen:
>
> Mir ist gegeben, dass [mm](Z_{n})_{n\in\IN}[/mm] stochastischen
> gegen c konvergiert, d.h. für alle [mm]\varepsilon[/mm] > 0 gilt:
>
> [mm]\IP(|X_{n}-c|\ge \epsilon) = \IP(\{\omega\in\Omega:|X_{n}(\omega) - c|\ge \varepsilon\}) \to 0[/mm]
Anders gesagt: fuer jedes [mm] $\varepsilon [/mm] > 0$ gilt [mm] $\lim_{n\to\infty} \IP(|X_n [/mm] - c| < [mm] \varepsilon) [/mm] = 1$.
> Nun habe ich noch, dass g stetig ist, d.h. [mm]\forall x_{0}\in\IR[/mm]
> :
>
> [mm]\forall \varepsilon > 0 \exists \delta > 0: \forall x\in\IR \mbox{ mit } |x_{0}-x|<\delta \Rightarrow |f(x)-f(x_{0})| < \epsilon[/mm]
Genau. Insbesondere ist (fuer festes $n$) also [mm] $\{ \omega : |g(X_n(\omega)) - g(c)| < \varepsilon \}$ [/mm] eine Obermenge von [mm] $\{ \omega : |X_n(\omega) - c| < \delta \}$. [/mm] Insbesondere gilt also [mm] $\IP(|X_n [/mm] - c| < [mm] \delta) \le \IP(|g(X_n) [/mm] - g(c)| < [mm] \varepsilon)$.
[/mm]
Was sagt dies ueber [mm] $\lim_{n\to\infty} \IP(|g(X_n) [/mm] - g(c)| < [mm] \varepsilon)$ [/mm] aus?
LG Felix
|
|
|
|
|
Hallo felix,
danke für deine Antwort!
Ja, das mit der Obermenge leuchtet mir jetzt ein.
> Moin Stefan!
>
> > Sei [mm](Z_{n})_{n\in\IN}[/mm] eine Folge von Zufallsvariablen, die
> > stochastisch gegen eine Konstante c konvergiert. Zeige,
> > dass dann für jede stetige Funktion [mm]g:\IR\to\IR[/mm] die Folge
> > [mm](g(Z_{n}))_{n\in\IN}[/mm] stochastisch gegen g(c) konvergiert!
> >
> > Ich möchte euch bitten, einen kritischen Blick auf meine
> > Lösung zu werfen:
> >
> > Mir ist gegeben, dass [mm](Z_{n})_{n\in\IN}[/mm] stochastischen
> > gegen c konvergiert, d.h. für alle [mm]\varepsilon[/mm] > 0 gilt:
> >
> > [mm]\IP(|X_{n}-c|\ge \epsilon) = \IP(\{\omega\in\Omega:|X_{n}(\omega) - c|\ge \varepsilon\}) \to 0[/mm]
>
> Anders gesagt: fuer jedes [mm]\varepsilon > 0[/mm] gilt
> [mm]\lim_{n\to\infty} \IP(|X_n - c| < \varepsilon) = 1[/mm].
>
> > Nun habe ich noch, dass g stetig ist, d.h. [mm]\forall x_{0}\in\IR[/mm]
> > :
> >
> > [mm]\forall \varepsilon > 0 \exists \delta > 0: \forall x\in\IR \mbox{ mit } |x_{0}-x|<\delta \Rightarrow |f(x)-f(x_{0})| < \epsilon[/mm]
>
> Genau. Insbesondere ist (fuer festes [mm]n[/mm]) also [mm]\{ \omega : |g(X_n(\omega)) - g(c)| < \varepsilon \}[/mm]
> eine Obermenge von [mm]\{ \omega : |X_n(\omega) - c| < \delta \}[/mm].
> Insbesondere gilt also [mm]\IP(|X_n - c| < \delta) \le \IP(|g(X_n) - g(c)| < \varepsilon)[/mm].
>
> Was sagt dies ueber [mm]\lim_{n\to\infty} \IP(|g(X_n) - g(c)| < \varepsilon)[/mm]
> aus?
Ich bin mir noch nicht ganz sicher, aber wo ich ja hin will, ist dass [mm] \IP(|X_n [/mm] - c| < [mm] \delta) \to [/mm] 1 konvergiert für [mm] n\to\infty. [/mm] Weil dann folgt daraus natürlich wegen der Ungleichung [mm] $\IP(|X_n [/mm] - c| < [mm] \delta) \le \IP(|g(X_n) [/mm] - g(c)| < [mm] \varepsilon)$ [/mm] dass auch $ [mm] \IP(|g(X_n) [/mm] - g(c)| < [mm] \varepsilon) \to [/mm] 1$ für [mm] n\to\infty.
[/mm]
Mir ist aber noch nicht ganz klar, wieso [mm] $\IP(|X_n [/mm] - c| < [mm] \delta) \to [/mm] 1$ ist. Ich weiß ja nur dass [mm] $\IP(|X_n [/mm] - c| < [mm] \varepsilon) \to [/mm] 1$ ist.
Das scheint jetzt aber kein wahrscheinlichkeitstheoretisches, sondern ein analytisches Problem zu sein.
Kannst du mir nochmal helfen?
Grüße,
Stefan
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:17 Mi 02.12.2009 | Autor: | felixf |
Hallo Stefan!
> Ja, das mit der Obermenge leuchtet mir jetzt ein.
Gut :)
> Ich bin mir noch nicht ganz sicher, aber wo ich ja hin
> will, ist dass [mm]\IP(|X_n[/mm] - c| < [mm]\delta) \to[/mm] 1 konvergiert
> für [mm]n\to\infty.[/mm] Weil dann folgt daraus natürlich wegen
> der Ungleichung [mm]\IP(|X_n - c| < \delta) \le \IP(|g(X_n) - g(c)| < \varepsilon)[/mm]
> dass auch [mm]\IP(|g(X_n) - g(c)| < \varepsilon) \to 1[/mm] für
> [mm]n\to\infty.[/mm]
Genau.
> Mir ist aber noch nicht ganz klar, wieso [mm]\IP(|X_n - c| < \delta) \to 1[/mm]
> ist. Ich weiß ja nur dass [mm]\IP(|X_n - c| < \varepsilon) \to 1[/mm]
> ist.
Na, ob du das jetzt [mm] $\delta$ [/mm] oder [mm] $\varepsilon$ [/mm] nennst ist doch egal. Wenn [mm] $X_n$ [/mm] stochastisch gegen $c$ konvergiert, dann gilt fuer jedes [mm] $\varepsilon [/mm] > 0$, dass [mm]\IP(|X_n - c| < \varepsilon) \to 1[/mm]. Und ebenso gilt fuer jedes [mm] $\delta [/mm] > 0$, dass [mm]\IP(|X_n - c| < \delta) \to 1[/mm]. Du kannst es auch [mm] $\zeta$ [/mm] oder [mm] $\aleph$ [/mm] oder $x$ nennen, es gilt immer noch ;)
LG Felix
|
|
|
|
|
Hallo Felix,
danke für deine Antwort, habe es mir nochmal durch den Kopf gehen lassen. Was mich nur irritiert hatte war, dass [mm] \delta [/mm] ja von [mm] \varepsilon [/mm] abhängt. Das ist aber egal, da die Stochastische Konvergenzaussage ja für alle [mm] \varepsilon' [/mm] > 0 galt.
Grüße,
Stefan
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 14:37 Mi 02.12.2009 | Autor: | iks |
Hallo Stefan!
> Nun dachte ich, daraus folgern zu können: Da die Gleichung
> in der Stetigkeit ja nicht gilt, muss die Menge
> [mm]M_1:=\{x\in\IR:|g(x)- g(x_{0})|\ge \varepsilon\}[/mm] gerade der
> Menge [mm]M_2:=\{x\in\IR:|x- x_{0}|\ge \delta\}[/mm]
>
Bist du sicher das die Gleichheit [mm] $M_1=M_2$ [/mm] der obigen Mengen wirklich gilt? Die Stetigkeit schließt doch nicht aus, das ausserhalb der Deltakugel noch Elemente $x'$ existieren, so dass [mm] $|f(x')-f(x_o)|<\epsilon$ [/mm] gilt. [mm] $M_1\subset M_2$ [/mm] sollte aber stimmen.
> entsprechen, also ist:
>
> [mm] $\IP(\{\omega\in\Omega:|g(X_{n}(\omega) )- g(c)|\ge \varepsilon\})= \IP(\{\omega\in\Omega:|X_{n}(\omega) - c|\ge \delta\}) \to0$ [/mm]
>
>
Obiges änderte sich dann zu:
[mm] $\IP(\{\omega\in\Omega:|g(X_{n}(\omega) )- g(c)|\ge \varepsilon\})\leq\IP(\{\omega\in\Omega:|X_{n}(\omega) - c|\ge \delta\}) \to0$
[/mm]
Die Richtigkeit des Rest's kann ich (noch) nicht überblicken.
mFg iks
|
|
|
|
|
Danke iks,
du hast recht, da hab ich mich wohl vertan.
Grüße,
Stefan
|
|
|
|