www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Maschinenbau" - Strömungstechnik
Strömungstechnik < Maschinenbau < Ingenieurwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maschinenbau"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Strömungstechnik: Navier-Stokes Gleichungen
Status: (Frage) überfällig Status 
Datum: 12:22 Mo 19.11.2012
Autor: mbau16

Aufgabe
Formulieren Sie die Navier- Stokes Gleichung für die x-Achse in Hinblick auf folgenden vereinfachten Fall:

eindimensionale, schleichende Strömung infolge eines Druckgradienten

Hallo zusammen,

hier habe ich in Hinblick auf die Lösung einige Fragen an Euch.

Schauen wir uns die Gleichung einmal an.

[mm] \rho\left(c_{x}*\bruch{\partial c_{x}}{\partial x}+c_{y}*\bruch{\partial c_{x}}{\partial y}+c_{z}*\bruch{\partial c_{x}}{\partial z}+\bruch{\partial c_{x}}{\partial t}\right)=f_{x}-\bruch{dp}{dx}+\eta\left(\bruch{\partial^{2} c_{x}}{\partial x^{2}}+\bruch{\partial^{2} c_{x}}{\partial y^{2}}+\bruch{\partial^{2} c_{x}}{\partial z^{2}}\right) [/mm]

Schritt für Schritt:

1.Eindimensional

[mm] \rho\left(c_{x}*\bruch{\partial c_{x}}{\partial x}+\bruch{\partial c_{x}}{\partial t}\right)=f_{x}-\bruch{dp}{dx}+\eta\left(\bruch{\partial^{2} c_{x}}{\partial y^{2}}\right) [/mm]

Hier meine erste Frage. Wieso fallen bei einer eindimensionalen Strömung in x- Richtung, die beiden Reibungsterme in x und z Richtung weg? Wie sieht das ganze aus, wenn ich eine eindimensionale Strömung in y und z Richtung habe? (In Bezug auf die Reibungsterme)

2.Schleichende Strömung:

[mm] f_{x}-\bruch{dp}{dx}+\eta\left(\bruch{\partial^{2} c_{x}}{\partial y^{2}}\right) [/mm]

Habe ich es richtig verstanden, dass bei einer schleichenden Strömung der komplette Impulsterm wegfällt, da dieser aufgrund der geringen Geschwindigkeit zu vernachlässigen ist?

3. ...infolge eines Druckgradienten

Es gibt keinem äußeren Kräfteinfluß.

[mm] -\bruch{dp}{dx}+\eta\left(\bruch{\partial^{2} c_{x}}{\partial y^{2}}\right) [/mm]

[mm] \bruch{dp}{dx}=\eta\left(\bruch{\partial^{2} c_{x}}{\partial y^{2}}\right) [/mm]

Ich würde mich sehr über Eure Hilfe freuen!

Gruß

mbau16

        
Bezug
Strömungstechnik: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:20 Mi 21.11.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maschinenbau"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]