Strom berechnen < Elektrotechnik < Ingenieurwiss. < Vorhilfe
|
Hallo,
ich wollte den Strom [mm] I_{D2} [/mm] berechnen. Gegeben ist :
[mm] U_{D1}= [/mm] 0V, [mm] U_{D2} [/mm] = 0V
Mein Ansatz:
[mm] I_{D2} [/mm] = [mm] \bruch{U}{R_{2}} [/mm] = [mm] \bruch{-15 V}{5*10^{3} Ohm} [/mm] = [mm] -3*10^{-3} [/mm] A = -3mA
Aber in der Musterlösung haben sie 3mA raus.
Sie haben [mm] \bruch{0V-(-15V)}{5*10^{3} Ohm} [/mm] gerechnet.
Ich weiß nicht wieso sie [mm] U_{D}-U [/mm] rechnen.
Wenn ich die Formel: U = [mm] I_{D}*R+ U_{D} [/mm] umstelle, bekomme ich doch
[mm] I_{D}= \bruch{U- U_{D}}{R}, [/mm] d.h. [mm] U-U_{D} [/mm] und NICHT [mm] U_{D}-U!?
[/mm]
Kann mir jemand weiterhelfen?
Vielen Dank im Voraus:)
LG Bubbles
[Dateianhang nicht öffentlich]
Dateianhänge: Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 10:26 Sa 14.02.2015 | Autor: | Infinit |
Hallo Bubbles,
bei dieser Aufgabe sind unausgesprochen bzw. ungeschrieben eine Menge Konventionen dabei, die man berücksichtigen sollte.
Ein positiver Strom fließt in Richtung des Dreiecks durch eine Diode und damit fließt dieser Strom [mm] I_{D2} [/mm] auch von oben nach unten durch den Widerstand R2. So ein Widerstand ist ein Verbraucher und wird auch so gezählt, die in ihm umgesetzte Leistung ist positiv, also müssen Strompfeil und Spannungspfeil in die gleiche Richtung zeigen, in Deinem Fall nach unten.
Dadurch, dass an den Dioden keine Spannung abfällt (idealer Durchlass), liegt demzufolge die Masse mit 0 V auch am Verbindungungspunkt der Dioden D1 und D2 und wegen [mm] U_{D2} = 0 V [/mm] auch am oberen Ende des Widerstands R2. Der Name des Spannungsabfalls sagt es ja schon, dass in so einem Zählsystem das Spannungspotential am Beginn des Zählpfeils, der an [mm] U_{R2} [/mm] liegt (leider ist er nicht eingezeichnet) größer ist als an der Pfeilspitze des Zählpfeils. Das ist hier der Fall und demzufolge fallen 15 V an R2 ab und nicht -15 V. Das ist der ganze Grund für diese kurze Rechnung. Ein negativer Strom kann durch die Diode gar nicht fließen, denn diese würde ihn sperren.
Viele Grüße,
Infinit
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 13:24 Sa 14.02.2015 | Autor: | bubblesXD |
Danke
Ich habe es jetzt verstanden^^
|
|
|
|