Sup und Inf < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 22:28 Mi 13.10.2010 | Autor: | mongoo |
Guten Abend
Ich muss folgende Aufgabe lösen:
Seien A, B [mm] \subset \IR [/mm] beschränkt und nicht leer.
Man definiere die Megne
-A := [mm] {a\in\IR|-a\inA}.
[/mm]
Zeige sup(-A)=-inf(A)
Ich möchte dies anhand folgender Definition lösen:
Def. von Supremum und Infimum
s=sup(A) [mm] \gdw [\forall [/mm] a [mm] \in [/mm] A a [mm] \le [/mm] s [mm] \wedge [/mm] falls t [mm] \ge [/mm] a [mm] \forall [/mm] a [mm] \in [/mm] A, so ist t [mm] \ge [/mm] s]
i=inf(A) [mm] \gdw [\forall [/mm] a [mm] \in [/mm] A i [mm] \le [/mm] a [mm] \wedge [/mm] falls h [mm] \le [/mm] a [mm] \forall [/mm] a [mm] \in [/mm] A, so ist h [mm] \le [/mm] i]
Kann ich nun:
sup(-A) [mm] \gdw [\forall [/mm] a [mm] \in [/mm] -A -a [mm] \le [/mm] s [mm] \wedge [/mm] falls t [mm] \ge [/mm] -a [mm] \forall [/mm] a [mm] \in [/mm] -A, so ist t [mm] \ge [/mm] s]
[mm] \gdw [\forall [/mm] a [mm] \in [/mm] -A s [mm] \le [/mm] a [mm] \wedge [/mm] falls a [mm] \ge [/mm] t [mm] \forall [/mm] a [mm] \in [/mm] -A, so ist t [mm] \ge [/mm] s]
-inf(A) [mm] \gdw [\forall [/mm] a [mm] \in [/mm] A -i [mm] \le [/mm] a [mm] \wedge [/mm] falls h [mm] \le [/mm] a [mm] \forall [/mm] a [mm] \in [/mm] A, so ist h [mm] \le [/mm] -i]
[mm] \gdw [\forall [/mm] a [mm] \in [/mm] A a [mm] \le [/mm] i [mm] \wedge [/mm] falls h [mm] \le [/mm] a [mm] \forall [/mm] a [mm] \in [/mm] A, so ist i [mm] \le [/mm] h]
Ist das so?????
Liebe Grüsse mongoo
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
> Guten Abend
>
> Ich muss folgende Aufgabe lösen:
> Seien A, B [mm]\subset \IR[/mm] beschränkt und nicht leer.
> Man definiere die Megne
> -A := [mm]{a\in\IR|-a\inA}.[/mm]
> Zeige sup(-A)=-inf(A)
>
> Ich möchte dies anhand folgender Definition lösen:
> Def. von Supremum und Infimum
> s=sup(A) [mm]\gdw [\forall[/mm] a [mm]\in[/mm] A a [mm]\le[/mm] s [mm]\wedge[/mm] falls t [mm]\ge[/mm]
> a [mm]\forall[/mm] a [mm]\in[/mm] A, so ist t [mm]\ge[/mm] s]
> i=inf(A) [mm]\gdw [\forall[/mm] a [mm]\in[/mm] A i [mm]\le[/mm] a [mm]\wedge[/mm] falls h [mm]\le[/mm]
> a [mm]\forall[/mm] a [mm]\in[/mm] A, so ist h [mm]\le[/mm] i]
>
Hallo,
> Kann ich nun:
> sup(-A) [mm]\gdw [\forall[/mm] a [mm]\in[/mm] -A -a [mm]\le[/mm] s [mm]\wedge[/mm] falls t [mm]\ge[/mm] -a [mm]\forall[/mm] a [mm]\in[/mm] -A, so ist t [mm]\ge[/mm] s]
sup(-A) ist äquivalent zu nichts, denn es ist ja gar keine Aussage.
Meintest Du "s=sup(-A)?"
Falls ja:
wenn s das Supremum von -A ist, dann gilt für alle [mm] b\in [/mm] -A: [mm] b\le [/mm] s. (obere Schranke).
Keinesfalls gilt, wie Du schreibst, für alle [mm] a\in [/mm] A: [mm] -a\le [/mm] s.
Mach Dir das doch mal an einem kleinen Beispiel klar:
nehmen wir die Menge [mm] A:=\{-2,-1,0, 4, 5}
[/mm]
Es ist infA=-2 und supA=5.
Es ist [mm] -A=\{-5, -4, 0, 1, 2},
[/mm]
inf(-A)=-5 und sup(-A)=2.
Jetzt mal zum Beweis.
Sei A also so eine Menge mit s:=supA und i:=infA.
Zeigen willst Du, daß inf(-A)=-s.
Zeige dazu, daß -s eine untere Schranke von -A ist, und daß es die kleinste untere Schranke ist.
Gruß v. Angela
> [mm]\gdw [\forall[/mm] a [mm]\in[/mm] -A s [mm]\le[/mm] a [mm]\wedge[/mm] falls a [mm]\ge[/mm] t [mm]\forall[/mm]
> a [mm]\in[/mm] -A, so ist t [mm]\ge[/mm] s]
> -inf(A) [mm]\gdw [\forall[/mm] a [mm]\in[/mm] A -i [mm]\le[/mm] a [mm]\wedge[/mm] falls h [mm]\le[/mm]
> a [mm]\forall[/mm] a [mm]\in[/mm] A, so ist h [mm]\le[/mm] -i]
> [mm]\gdw [\forall[/mm] a [mm]\in[/mm] A a [mm]\le[/mm] i [mm]\wedge[/mm] falls h [mm]\le[/mm] a [mm]\forall[/mm]
> a [mm]\in[/mm] A, so ist i [mm]\le[/mm] h]
> Ist das so?????
>
> Liebe Grüsse mongoo
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
|
|
|
|