Surjektivität einer Gruppe < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Sei (G, *) eine Gruppe und [mm] S_{G} [/mm] die symmetrische Gruppe zu der Menge G. Für g [mm] \in [/mm] G sei
[mm] \Phi_{g}: [/mm] G [mm] \to [/mm] G definiert durch [mm] \Phi_{g}(x) [/mm] = [mm] gxg^{-1} [/mm] (x [mm] \in [/mm] G)
Zeigen Sie, dass jedes [mm] \psi_{g} [/mm] bijektiv ist (und damit in [mm] S_{G} [/mm] liegt) Zeigen Sie weiter, dass die Abbildung [mm] \Phi: [/mm] G -> [mm] S_{G}, [/mm] g [mm] \to \Phi_{g} [/mm] ( g [mm] \in [/mm] G) ein Gruppenhomomorphismus ist. |
Hallo,
ich habe bereits die Injektivität und auch schon den Gruppenhomomorphismus gezeigt. Mir fehlt noch die Surjektivität zu zeigen. Wie geh ich denn da vor?
Definition: Falls f(X) = Y, d.h. falls es zu jedem y [mm] \in [/mm] Y ein x [mm] \in [/mm] X gibt mit y = f(x)
Nun steh ich allerdings aufm Schlauch, da mir hier jeder leider jeder Anhaltspunkt fehlt.
Hat jemand eine Idee, wie ich hier konkret vorgehen kann?
Danke schonmal.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:50 So 15.11.2009 | Autor: | felixf |
Hallo!
> Sei (G, *) eine Gruppe und [mm]S_{G}[/mm] die symmetrische Gruppe zu
> der Menge G. Für g [mm]\in[/mm] G sei
> [mm]\Phi_{g}:[/mm] G [mm]\to[/mm] G definiert durch [mm]\Phi_{g}(x)[/mm] = [mm]gxg^{-1}[/mm]
> (x [mm]\in[/mm] G)
> Zeigen Sie, dass jedes [mm]\psi_{g}[/mm] bijektiv ist (und damit in
> [mm]S_{G}[/mm] liegt) Zeigen Sie weiter, dass die Abbildung [mm]\Phi:[/mm] G
> -> [mm]S_{G},[/mm] g [mm]\to \Phi_{g}[/mm] ( g [mm]\in[/mm] G) ein
> Gruppenhomomorphismus ist.
>
> ich habe bereits die Injektivität und auch schon den
> Gruppenhomomorphismus gezeigt. Mir fehlt noch die
> Surjektivität zu zeigen. Wie geh ich denn da vor?
Im Prinzip genauso wie bei der Injektivitaet.
> Definition: Falls f(X) = Y, d.h. falls es zu jedem y [mm]\in[/mm] Y
> ein x [mm]\in[/mm] X gibt mit y = f(x)
>
> Nun steh ich allerdings aufm Schlauch, da mir hier jeder
> leider jeder Anhaltspunkt fehlt.
Nun, nimm dir ein $y [mm] \in [/mm] G$ und finde ein $x [mm] \in [/mm] G$ mit [mm] $\psi_g(x) [/mm] = y$. Schreib das doch einfach mal aus und forme um.
LG Felix
|
|
|
|