T-Verteilung < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
|
Hallo,
eins vorneweg: Diese Frage ist zur T-Verteilung. Bitte nicht drüber wundern, dass ich gleichzeitig einen anderen Thread mit einer ähnlichen Frage zur F-Verteilung habe.
In meinem Buch wird die T-Verteilung vorgestellt; für meine Begriffe leider etwas zu kurz:
Definition T-Verteilung:
"Gegeben sind die beiden unabhängigen Zufallsvariablen X und Z, wobei X chi-quadrat-verteilt mit m Freiheitsgraden und Z standardnormalverteilt sei. Dann heißt die Verteilung der Zufallsvariablen
T = [mm] \bruch{Z}{\wurzel{X/m}}
[/mm]
t-Verteilung (oder Student-Verteilung) mit m Freiheitsgraden,.."
Danach wird noch ein Bisschen auf die Eigenschaften der Veteilung eingegangen und dann folgt einfach folgender Satz:
"Sei S die Standardabweichung und [mm] \overline{X} [/mm] das arithmetische Mittel einer zufälligen Stichprobe [mm] X_1, [/mm] ..., [mm] X_n [/mm] vom Umfang n, die aus einer normalverteilten Grundgesamtheit mit Erwartungswert [mm] \mu [/mm] stammt. Wir setzen voraus, dass die n Beobachtungen [mm] X_1, [/mm] ..., [mm] X_n [/mm] unabhängig erfolgt sind. Dann besitzt die Zufallsvariable T = [mm] \bruch{\overline{X} - \mu}{S/\wurzel{n}}
[/mm]
eine t-Verteilung mit m = n - 1 Freiheitsgraden."
Meine Frage hierzu: Wie hängen [mm] \bruch{Z}{\wurzel{X/m}} [/mm] und [mm] \bruch{\overline{X} - \mu}{S/\wurzel{n}} [/mm] zusammen? Ich weiß zwar, dass [mm] \bruch{(n - 1)S^2}{\sigma^2} [/mm] eine [mm] \chi^2-Verteilung [/mm] hat, wenn [mm] S^2 [/mm] die Varianz einer zufälligen Stichprobe [mm] X_1, [/mm] ..., [mm] X_n [/mm] vom Umfang n aus einer normalverteilten Grundgesamtheit mit Varianz [mm] \sigma^2 [/mm] ist, aber in der Formel für T kommt ja [mm] \sigma^2 [/mm] gar nicht vor.
1) Welche Entsprechungen gibt es in der Formel für T für die Variablen X, Z und m?
2) Warum hat T dann m = n - 1 Freiheitsgrade?
Danke und Gruß,
Martin
|
|
|
|
Hiho,
hier analog zur anderen Frage: Geh schrittweise vor. Du hast es ja nun schon fast selbst geschafft und kurz vor dem Ziel aufgehört zu denken…
> Ich weiß zwar, dass [mm]\bruch{(n - 1)S^2}{\sigma^2}[/mm] eine
> [mm]\chi^2-Verteilung[/mm] hat, wenn [mm]S^2[/mm] die Varianz einer
> zufälligen Stichprobe [mm]X_1,[/mm] ..., [mm]X_n[/mm] vom Umfang n aus einer
> normalverteilten Grundgesamtheit mit Varianz [mm]\sigma^2[/mm] ist,
> aber in der Formel für T kommt ja [mm]\sigma^2[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
gar nicht vor.
In der Formel für $T$ steht im Zähler aber auch gar keine standardnormalverteilte Zufallsvariable, wie es für die $t$-Verteilung aber gefordert wird!
Wenn wir das berücksichtigen und entsprechend normieren (was ist denn die Varianz von $\overline{X} - \mu$?), sieht man den Rest doch aber sofort!
Es ist nämlich: $T = \bruch{\overline{X} - \mu}{S/\wurzel{n}} = \bruch{\bruch{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}}}{\sqrt\bruch{S^2}{\sigma^2}} = \frac{Z}{\sqrt{\frac{X}{n-1}}}$ mit
$Z= {\bruch{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}} \sim \mathcal{N}(0,1)$ (wie gefordert!)
und $X = \bruch{(n-1)S^2}{\sigma^2} \sim \chi^2_{n-1}$
Gruß,
Gono
|
|
|
|