www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - TNF mit i
TNF mit i < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

TNF mit i: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:59 Mo 31.03.2008
Autor: SusanneK

Aufgabe
Sei A eine Matrix über [mm] \IC[/mm]  [mm] =\pmat{i-2&0&0&0\\0&i-2&0&0\\-1&2&i&1\\-2&4&-1&i}[/mm]

Ich habe diese Frage in keinem anderen Forum gestellt.

Ich will diese Matrix in die TNF überführen um das homogene GS Ax=0 zu lösen.
Darf ich dabei die 1. und 2. Zeile einfach durch (i-2) teilen, um 1 an die Pivotpositionen zu bekommen, oder geht das mit i nicht so einfach ?
Ich bekäme dann irgendwann [mm] \pmat{1&0&0&0\\0&1&0&0\\0&0&i&1\\0&0&-1&i}[/mm].
Wenn ich dann die 3.Zeile mit i multipl. und zur 4. addiere: [mm] \pmat{1&0&0&0\\0&1&0&0\\0&0&1&-i\\0&0&0&0} [/mm]
Geht das ?

Danke, Susanne.


        
Bezug
TNF mit i: Antwort
Status: (Antwort) fertig Status 
Datum: 22:11 Mo 31.03.2008
Autor: pelzig

Ich hab zwar keine Ahnung was ne TNF is, aber wie man son homogenes GS über [mm] $\IC$ [/mm] löst schon...

>  Darf ich dabei die 1. und 2. Zeile einfach durch (i-2)
> teilen, um 1 an die Pivotpositionen zu bekommen, oder geht
> das mit i nicht so einfach ?

Ja klar geht das. Da sonst in den Zeilen nur Nullen vorkommen musst du gar nix über komplexe Zahlen wissen...


> [...] Wenn ich dann die 3.Zeile mit i multipl. und zur 4.
> addiere: [mm]\pmat{1&0&0&0\\0&1&0&0\\0&0&1&-i\\0&0&0&0}[/mm]
> Geht das ?

Also eigentlich hast du mit $-i$ multipliziert aber das Ergebnis sieht richtig aus.

Gruß, Robert


Bezug
                
Bezug
TNF mit i: Danke !
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:14 Mo 31.03.2008
Autor: SusanneK

Hallo Robert, vielen Dank für deine schnelle Hilfe !

TNF = Treppennormalform

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]