Tangenten Frage und Asymptoten < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Hallo liebe Mathe Communty,
da ich morgen einen Test schreibe suche ich mir zu zwei Fragen mal in diesem Boad hilfe.
Zunächst wird es morgen in dem Test darum gehen eine funktion nach Eigenschaften hin zu bestimmen und eine Funktion auf eigenschaften zu untersuchen.
Meine 2 Fragen:
Beim bestimmen der Funktionen gibt es ja verschiedene vorgehensweisen :
Ist ein Punkt (x/y) gegeben setzt man den einfach in die normale Formel ax²+bx+c ein.
Ist ein Extrempunkt gegeben kann man diesen Punkt ebenfalls einsetzten da er ja Punkt der Gerade ist und F'(x)=0
Ist ein Wendepunkt gegeben so kann man diesen auch einsetzten und F''(x)=0
Wenn aber ein Punkt (x/y) gegeben ist und es steht :(Zitat: ..hat in P(1/4) eine Tangente) oder (Zitat:...in A(2/2) die 1. Winkelhalbierende als Tangente) -> Was bedeutet dies dann?
2.Frage zur 2 Aufgabe
Ist mir eine Funktion gegeben habe ich keine Probleme NST/Extrempunkte/Wendestellen- und Punkte/ Schnittpunkte mit der x- und y-Achse,das Verhalten im UE zu berechnen, ABER
Wie berechne ich die Asymptoten der Funktion?
Mfg
Alex
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Also zu deiner ersten Frage:
wenn da steht, die Funktion hat an Punkt P(x|y) eine Tangente mit der Steigung 2 bedeutet das nichts anderes, als das die 1.Ableitung an der Stelle Px den Funktionswert 2 hat.
Beispiel:
$ f(x) = [mm] 2x^2 [/mm] + 4 $
$ f'(x) = 4x $
f(x) hat im Punkt P(2|12) die Steigung 8.
Die Winkelhalbierenden sind nur ein Trick um bisschen auf das Wissen zu testen.
Die 1.Winkelhalbierende hat die Geradenform y = x also ist hier die Steigung 1.
Zu der Frage mit den Asymptoten.
Grundsätztlich gibt es drei "Sorten" von Asymptoten.
waagerechte Asymptote, senkrechte Asymptote und eine Funktion als Asymptote.
Die senktrechte Asymptote tritt an Polstellen auf.
Beispiel:
$ g(x) = [mm] \bruch{x}{(x^2-4x-5)} [/mm] $ hat zwei Polstellen und damit zwei senkrechte Asymptoten.
Berechnen kannst das über die Nullstellen des Nenners, also die Polstellen, mehr musst da nicht tun.
Die Waagerechte Asymptote und eine Funktion als Asymptote gehöhren im Prinzip zusammen.
Wenn die Gerade der sich die Funktion annähert keine Steigung (m=0) hat dann spricht man von einer waagerechten Asymptote.
Berechnen kannst das:
$ [mm] \limes_{x\rightarrow\infty} [/mm] f(x) - p(x) = 0 $ wobei p(x) die Asymptote ist.
Beispiel:
$ f(x) = [mm] \bruch{1}{x} [/mm] + [mm] \bruch{x}{2} [/mm] $
$ [mm] \limes_{x\rightarrow\infty} [/mm] f(x) - p(x) = 0 $
$ [mm] \limes_{x\rightarrow\infty}\bruch{1}{x} [/mm] + [mm] \bruch{x}{2} [/mm] - p(x) = 0 $
So das ganze hat jetzt eine echt gebrochen rationale Funktion und ganzrationale Funktion.
Geht jetzt x gegen unendlich geht [mm] \bruch{1}{x} [/mm] gegen 0. Was "übrig" bleibt ist [mm] \bruch{x}{2} [/mm] die "verhindert", dass die Bedingung erfüllt ist. Also muss mit p(x) dieser Rest "eliminiert" werden.
Also ist $ p(x) = [mm] \bruch{x}{2} [/mm] $ die Asymptote.
Hast du jetzt beispielsweise nur $ h(x) = [mm] \bruch{1}{x} [/mm] $ dann liegt eine waagerechte Asymptote vor, da kein Rest bleibt und h(x) -> [mm] \infty [/mm] = 0 ist.
Grundsätztlich kannst du einfach ne Polynomdivision machen.
Wenn keine Polynomdivision möglich ist, kann es nur waagerechte und senkrechte Asymptoten geben.
|
|
|
|
|
Und was ist wenn steht :
1. hat in (1/4) eine Tangente [ohne steigung dahinter]
2. x-Achse als Tangente [Heißt das m=0?]
3. und was ist die Wendetangente? [einfach ein Wendepunkt?]
Sonst hab ich soweit alles verstanden.
Das mit der Winkelhalbierenden is ja Tricky ;)
|
|
|
|
|
> Und was ist wenn steht :
> 1. hat in (1/4) eine Tangente [ohne steigung dahinter]
Eine Funktion hat an jeder Stelle eine Tangente, da hast dann entweder was falsch verstanden,
könnte z.B. heißen die funktion g(x) ist Tangente an f(x) an der Stelle(1/4) oder ählich.
> 2. x-Achse als Tangente [Heißt das m=0?]
Genau
> 3. und was ist die Wendetangente? [einfach ein
> Wendepunkt?]
Wendetangente ist die Tangente im Wendepunkt.
>
> Sonst hab ich soweit alles verstanden.
> Das mit der Winkelhalbierenden is ja Tricky ;)
|
|
|
|