www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Tangentengleichung
Tangentengleichung < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tangentengleichung: Tipp
Status: (Frage) beantwortet Status 
Datum: 16:56 Do 15.01.2009
Autor: AbraxasRishi

Aufgabe
[mm] \frac{x*p_1}{a^2}-\frac{y*p_2}{b^2}=1 [/mm]

Hallo!

Ich versuche  gerade diese Formel mithilfe der Ableitung herzuleiten, habe aber einige Probleme. Könnte mir bitte jemand helfen?

Meine Ansätze sind:

[mm]\frac{x^2}{a^2}-\frac{y^2}{b^2}=1[/mm]

[mm]y'=\frac{xb^2}{ya^2}\qquad t:y=\frac{xb^2}{ya^2}x+z\qquad z=p_2-\frac{p_1^2b^2}{p_2a^2}\qquad ya^2p_2=p_1b^2x+a^2p_2^2-p_1^2b^2=\frac{p_1x}{a^2}-\frac{p_2y}{b^2}=\frac{-p_2^2}{b^2}+\frac{p_1^2}{a^2} [/mm]

Wenn meine Formel stimmen würde musste doch [mm] \frac{-p_2^2}{b^2}+\frac{p_1^2}{a^2} [/mm] =1 sein. Was mache ich falsch?

Vielen Dank !

Gruß

Angelika

        
Bezug
Tangentengleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:10 Do 15.01.2009
Autor: Al-Chwarizmi

hallo Angelika


> [mm]\frac{x*p_1}{a^2}-\frac{y*p_2}{b^2}=1[/mm]

> Ich versuche  gerade diese Formel mithilfe der Ableitung
> herzuleiten, habe aber einige Probleme. Könnte mir bitte
> jemand helfen?
>  
> Meine Ansätze sind:
>  
> [mm]\frac{x^2}{a^2}-\frac{y^2}{b^2}=1[/mm]
>  
> [mm]y'=\frac{xb^2}{ya^2}\qquad t:p_2=\frac{xb^2}{ya^2}x+z\qquad z=p_2-\frac{p_1^2b^2}{p_2a^2}\qquad ya^2p_2=p_1b^2x+a^2p_2^2-p_1^2b^2=\frac{p_1x}{a^2}-\frac{p_2y}{b^2}=\frac{-p_2^2}{b^2}+\frac{p_1^2}{a^2}[/mm]
>  
> Wenn meine Formel stimmen würde musste doch
> [mm]\frac{-p_2^2}{b^2}+\frac{p_1^2}{a^2}[/mm] =1 sein. Was mache ich
> falsch?


Wahrscheinlich nichts - ausser dass du möglicher-
weise ein kleines Problem hast mit der genauen
Bedeutung der Bezeichnungen.

Der Punkt [mm] P(p_1/p_2) [/mm] soll doch wohl der Punkt
auf der Hyperbel sein, in welchem die Tangente
angelegt wird. Dann ist klar, dass die Koordinaten
von P die Hyperbelgleichung auch erfüllen müssen.

LG

Bezug
                
Bezug
Tangentengleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:26 Do 15.01.2009
Autor: AbraxasRishi

Stimmt! Das habe ich total übersehen!Danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]