www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - Tangentialraum
Tangentialraum < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tangentialraum: Tangentialraum bestimmen
Status: (Frage) überfällig Status 
Datum: 15:09 So 13.06.2010
Autor: martinmax1234

Aufgabe
  U [mm] \subset R^{n} [/mm] offen und [mm] f\in c^{1}(U,R^{m}) [/mm] Es sei M=Graph(f)={(x,f(x))  x [mm] \in [/mm] U}. Man bestimme den Tangetialraum TpM

Hab da meine Probleme. Weiß nicht wie ich bei der Aufgabe mit der Definition umgehen soll.
Sei U [mm] \subset R^{n} [/mm] eine Untermann. und p [mm] \in [/mm] U . Ein Vektor [mm] v\in R^{n} [/mm] heisst Tangentialvektor an U im Punkt p, wenn es eine stetige differenzierbare Kurve
a: ]- [mm] \varepsilon [/mm] , [mm] \varepsilon[ \to [/mm] U [mm] \subset R^{n} [/mm] gibt mit
a(0)=p und a´(0)=v

Wäre super, wenn  ir jemand den vorgang erklären könnte, was ich machen muss und ggf. die def. erklärt

        
Bezug
Tangentialraum: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Di 15.06.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]