www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Taylor-Polynom
Taylor-Polynom < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Taylor-Polynom: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 21:45 Mo 03.09.2007
Autor: ragsupporter

Aufgabe
Für folgende Funktionen ermittle und skizziere man die TAYLOR-Polynome der Ordnung m in [mm]x_0 = 0[/mm]:

a) f(x)=sin(x), m=1,3,5
b) g(x)=sinh(x), m=1,3,5
c) h(x)= cosh(x), m=0,2,4

Hallo,

Hab da mal zwei Fragen:

1. Sind die folgenden Ergebnisse richtig?
2. Wie kann ich die Taylor-Polynome nun skizzieren?

__________________________________________________________

a) [mm] \sin(x)=0+ (\bruch{1}{1!})*(x-0)+((\bruch{-1}{3!})*(x-0)^3)+((\bruch{1}{5!})*(x-0)^5)[/mm] [mm]= x- \bruch{x^3}{3!}+\bruch{x^5}{5!}=\summe_{n=0}^{\infty}(-1)^n*\bruch{x^{2n+1}}{(2n+1)!}[/mm]


b) [mm] \sinh(x)=0+ (\bruch{1}{1!})*(x-0)+((\bruch{1}{3!})*(x-0)^3)+((\bruch{1}{5!})*(x-0)^5)[/mm]
[mm]= x+ \bruch{x^3}{3!}+\bruch{x^5}{5!}=\summe_{n=0}^{\infty}\bruch{x^{2n+1}}{(2n+1)!}[/mm]

c)  [mm] \cosh(x)=1+ (\bruch{1}{1!})*(x-0)+((\bruch{1}{2!})*(x-0)^2)+((\bruch{1}{4!})*(x-0)^4)[/mm]
[mm]= 1+x+ \bruch{x^2}{2!}+\bruch{x^4}{4!}=\summe_{n=0}^{\infty}\bruch{x^{2n}}{(2n)!}[/mm]


Danke Markus

        
Bezug
Taylor-Polynom: Antwort
Status: (Antwort) fertig Status 
Datum: 21:55 Mo 03.09.2007
Autor: leduart

Hallo
Die Reihen sind richtig, ausser dass du sie ja für m=1, 3 ,5 einzeln hinschreiben solltesst, und nicht dein Ende bis [mm] \infty. [/mm]
Da die gefragten Polynome  ja ne Gerade, Pol. 3. und 5-ten Grades sind, sollst du die einfach zeichnen, oder mit nem Funktionsplotter dir ansehen.
Gruss leduart

Bezug
                
Bezug
Taylor-Polynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:23 Mo 03.09.2007
Autor: ragsupporter

danke für die schnelle antwort.

aso alles klar. aber wie ich die funktion zeichne ist mir trotzdem net so ganz klar.

Bezug
                        
Bezug
Taylor-Polynom: Antwort
Status: (Antwort) fertig Status 
Datum: 22:33 Mo 03.09.2007
Autor: Bastiane

Hallo ragsupporter!

> danke für die schnelle antwort.
>  
> aso alles klar. aber wie ich die funktion zeichne ist mir
> trotzdem net so ganz klar.

Na, im ersten Fall ist das Taylor-Polynom ersten Grades wohl nur das x - das zweiten Gerades dann das x zusammen mit dem [mm] x^3 [/mm] - war das [mm] x-x^3 [/mm] oder so ähnlich? Und dann das 5.Grades genau alles zusammen. Eine Gerade wirst du ja wohl zeichnen können - und für die anderen beiden Fälle musst du halt einfach eine Art Wertetabelle machen - oder du nimmst einen FUNKTIONENPLOTTER! Das sollte in der Uni eigentlich erlaubt sein - da kann man ja nicht die krummsten Funktionen mit der Hand zeichnen - ansonsten lässt du sie dir plotten und zeichnest sie ab.

Ein Beispiel wäre z. B. auch []das hier - Prinzip der Taylorpolynome ist ja, dass sie - je mehr Summanden man ausrechnet - die Funktion immer genauer approximieren. Und das sieht man ganz schön, wenn man sie so der Reihe nach plottet. :-)

Viele Grüße
Bastiane
[cap]

Bezug
                                
Bezug
Taylor-Polynom: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:49 Mo 03.09.2007
Autor: ragsupporter

ah danke ich glaub jetzt geht mir ein licht auf... =)

Bezug
        
Bezug
Taylor-Polynom: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:57 Mo 03.09.2007
Autor: rainerS

Hallo Markus,

du hast einen Schreibfehler:

> c)  [mm]\cosh(x)=1+ (\bruch{1}{1!})*(x-0)+((\bruch{1}{2!})*(x-0)^2)+((\bruch{1}{4!})*(x-0)^4)[/mm]
>  
> [mm]= 1+x+ \bruch{x^2}{2!}+\bruch{x^4}{4!}=\summe_{n=0}^{\infty}\bruch{x^{2n}}{(2n)!}[/mm]

Die Summe am Schluss ist richtig, aber der zweite Term (x) ist zuviel:
[mm]\cosh x = 1 + \bruch{x^2}{2!}+\bruch{x^4}{4!} + \dots[/mm]

Grüße
   Rainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]