Taylor Entwicklung < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 19:40 Do 19.01.2012 | Autor: | ella87 |
Aufgabe | Geben Sie für die folgenden Funktionen f die Taylor-Entwicklung in der
Form
[mm]f(x)=\summe_{k=1}^{n}f^{(k)}(x_0)(x-x_0 )^k +f^{(n+1)}(a)(x-x_0 )^{n+1}[/mm]
mit [mm]|a-x_0 |\le |x-x_0 |[/mm] im Entwicklungspunkt [mm]x_0 = 0[/mm] an, indem Sie die höheren Ableitungen in [mm]x_0 = 0[/mm] berechnen.
(a) [mm]f: \IR \to \IR [/mm] mit [mm]f(x) = sin (x) [/mm] |
hä?
ich versteh die Aufgabe leider nicht so ganz.
Wir haben in der VL, so ganz nebenbei, die Taylorentwicklung eingeschoben und sind nicht fertig geworde. Es gibt also (noch) keine Def.
und irgendwie begreife ich nicht wo dieses f(x) herkommt und was es mir sagen soll und was ich jetzt damit anfange.
Das Taylorpolynom sieht ja irgendwie ganz anders aus.
Soll ich mir jetzt ein n wählen und das mal aufschreiben oder wie ist das gemeint?
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 21:39 Do 19.01.2012 | Autor: | chrisno |
Es geht darum, sin(x) als in der Form $a + bx + [mm] cx^2 [/mm] + [mm] dx^3 [/mm] ...$ zu darzustellen.
Also
[mm]sin(x)=\summe_{k=1}^{n}sin^{(k)}(x_0)(x-x_0 )^k +sin^{(n+1)}(a)(x-x_0 )^{n+1}[/mm]
Wenn Du nun noch [mm]x_0 = 0[/mm] einsetzt, wird das Ganze schon recht übersichtlich.
Mach das mal soweit, und melde Dich wieder. Du kannst natürlich auch schon die Ableitungen berechnen und feststellen, dass es dann noch viel übersichtlicher wird. Allerdings ist Dein Term nicht in Ordnung, da fehlen die Fakultäten im Nenner.
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 21:54 Do 19.01.2012 | Autor: | ella87 |
ja, genau das hab ich auch gedacht! Da fehlen die Fakultäten!
Aber ich hab die Aufgabe korrekt abgeschrieben. Deshalb versteh ich auch nicht, was das soll. Das was du geschrieben hast habe ich schon gemacht. Aber wenn ich das Ergebnis dann vergleiche (man findet es ja durch googln oder in einem Buch), dann fehlen eben die Fakultäten.
Also ist die Aufgabe vermutlich falsch gestellt!?!
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:02 Do 19.01.2012 | Autor: | chrisno |
Geh mal davon aus, dass da ein Tippfehler in der Aufgabe ist. Sonst ist es nicht die Taylor-Entwicklung und die Gleichung stimmt auch nicht, wenn an das a die normalen Anforderungen gestellt werden.
|
|
|
|