Taylorpolynom, Restglied < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 18:26 So 11.06.2017 | Autor: | Austinn |
Aufgabe | Wir betrachten die Funktion [mm] f\left( x \right) =x{e}^{x}.
[/mm]
a) Berechne das Taylorpolynom dritten Grades der Funktion $f$ in [mm] x_0=0.
[/mm]
b) Gebe an, wie im Falle von Aufgabenteil a) das Restglied aussieht. (hierzu muss man den Punkt [mm] \xi [/mm] nicht exakt bestimmen)
c) Gebe mit Hilfe des Satzes von Taylor an, wie groß der Approximationsfehler [mm] \left| f(x)-{ T }_{ 3,f }(x;0)\right| [/mm] höchstens werden kann, wenn wir die Funktion $f$ nur auf dem Intervall $[0,1]$ betrachten. |
Hallo,
a) [mm] {T}_{3}\left(x\right)=x+{x}^{2}+\frac{1}{2}{x}^{3}+\frac{1}{6} {x}^{4}
[/mm]
b) Hier habe ich meine Probleme, da hier kein Intervall angegeben ist und ich deshalb nicht weiß, wie ich mit dem [mm] \xi [/mm] umgehen soll.
Meine Vermutung:
[mm] \left| { R }_{ 3 } \right| =\left| \frac { 4{ e }^{ \xi }+\xi { e }^{ \xi } }{ 4! } { x }^{ 4 } \right|
[/mm]
c) Hier habe ich Probleme mit der Abschätzung. Ich weiß nicht ob ich das ganze ausrechnen soll oder einfach weiter abschätzen muss, bzw wie ich abschätzen darf.
[mm] \left|{R}_{3}\right|=\left|\frac{4{e}^{\xi}+\xi{e}^{\xi}}{4!}{\cdot x}^{4}\right|\le\frac {4{e}^{1}+1\cdot {e}^{1}}{4!}\cdot {1}^{4}=\frac{5{e}^{1}}{4!}\cdot {1}^{4}\le [/mm] 1
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 08:19 Mo 12.06.2017 | Autor: | fred97 |
> Wir betrachten die Funktion [mm]f\left( x \right) =x{e}^{x}.[/mm]
>
> a) Berechne das Taylorpolynom dritten Grades der Funktion [mm]f[/mm]
> in [mm]x_0=0.[/mm]
> b) Gebe an, wie im Falle von Aufgabenteil a) das Restglied
> aussieht. (hierzu muss man den Punkt [mm]\xi[/mm] nicht exakt
> bestimmen)
> c) Gebe mit Hilfe des Satzes von Taylor an, wie groß der
> Approximationsfehler [mm]\left| f(x)-{ T }_{ 3,f }(x;0)\right|[/mm]
> höchstens werden kann, wenn wir die Funktion [mm]f[/mm] nur auf dem
> Intervall [mm][0,1][/mm] betrachten.
>
>
>
> Hallo,
>
> a)
> [mm]{T}_{3}\left(x\right)=x+{x}^{2}+\frac{1}{2}{x}^{3}+\frac{1}{6} {x}^{4}[/mm]
>
> b) Hier habe ich meine Probleme, da hier kein Intervall
> angegeben ist und ich deshalb nicht weiß, wie ich mit dem
> [mm]\xi[/mm] umgehen soll.
> Meine Vermutung:
> [mm]\left| { R }_{ 3 } \right| =\left| \frac { 4{ e }^{ \xi }+\xi { e }^{ \xi } }{ 4! } { x }^{ 4 } \right|[/mm]
Ohne Beträge:
[mm] $R_3=\frac [/mm] { 4{ e [mm] }^{ \xi }+\xi [/mm] { e [mm] }^{ \xi } [/mm] }{ 4! } { x [mm] }^{ 4 }$
[/mm]
>
> c) Hier habe ich Probleme mit der Abschätzung. Ich weiß
> nicht ob ich das ganze ausrechnen soll oder einfach weiter
> abschätzen muss, bzw wie ich abschätzen darf.
>
> [mm]\left|{R}_{3}\right|=\left|\frac{4{e}^{\xi}+\xi{e}^{\xi}}{4!}{\cdot x}^{4}\right|\le\frac {4{e}^{1}+1\cdot {e}^{1}}{4!}\cdot {1}^{4}=\frac{5{e}^{1}}{4!}\cdot {1}^{4}\le[/mm]
Deine Abschätzung ist O.K.:
[mm] $|R_3| \le \frac{5{e}}{4!}$
[/mm]
> 1
>
|
|
|
|