Taylorreihe < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) überfällig | Datum: | 21:04 Do 17.06.2010 | Autor: | Lippel |
Aufgabe | Sei $D [mm] \in \IR^n$ [/mm] eine offene Menge und [mm] $f:D\to\IR$ [/mm] eine unendlich oft differenzierbare Funktion mit gleichmäßig beschränkten partiellen Ableitungen, d.h. in der üblichen Multi-Indexschreibweise gilt:
$ [mm] {\sup_{|\alpha|{\ge}0}}\left({\sup_{x \in D}}|D^{\alpha}f(x)|\right)<\infty$
[/mm]
Man zeige, dass dann die Taylor-Reihe von f,
$ [mm] T_{\infty}^{f}(x+h):=\summe_{|a|=0}^{\infty}\frac{D^{\alpha}f(x)}{{\alpha}!}h^{\alpha}, x\in [/mm] D$
für Inkremente [mm] $h\in\IR^n$ [/mm] mit $x+th{ [mm] \in [/mm] }D, [mm] t\in[0,1]$, [/mm] absolut konvergiert und die Funktion f dort darstellt:
[mm] $f(x+h)=T_{\infty}^{f}(x+h), x{\in}D$ [/mm] |
Hallo,
mir bereitet die Aufgabe große Schwierigkeiten, vielleicht auch wegen den Multiindices.
Da alle partiellen Ableitungen gleichmäßig beschränkt sind, folgt nach einem Satz aus unserer Vorlesung, dass damit auch alle partiellen Ableitungen stetig sind, da deren partiellen Ableitungen ja wieder beschränkt sind. Also folgt, dass alle Ableitungen stetig sind. Nur so ist die Notation [mm] $D^{\alpha}f(x)$ [/mm] überhaupt wohldefiniert.
Ich möchte nun zeigen, dass die Taylorreihe absolut konvergiert, und komme dabei nicht weiter. Es handelt sich ja nicht um eine "klassische" Potenzreihe, da ja [mm] $h^{\alpha}=h_{1}^{\alpha_1}*...*h_{n}^{\alpha_n}$
[/mm]
also habe ich ja keine Potenzreihe in einer Variablen? Kann ich trotzdem einen Konvergenzradius berechnen?
[mm] $\rho=\left(\limsup_{|\alpha|\to\infty}\wurzel[|\alpha|]{\left|\frac{D^{\alpha}f(x)}{{\alpha}!}\right|}\right)^{-1}=\infty$, [/mm] da [mm] $|D^{\alpha}f(x)|$ [/mm] beschränkt ist, ist nicht zulässig oder?
Ich weiß irgendwie nicht so richtig wie ich da rangehen, mit den Multiindices.
Vielen Dank für eure Hilfe.
Grüße, Lippel
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 21:20 Sa 19.06.2010 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|