www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Taylorreihen
Taylorreihen < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Taylorreihen: Restgliedbestimmung
Status: (Frage) überfällig Status 
Datum: 11:22 Sa 01.07.2006
Autor: RalU

Aufgabe
Sei f: x-> [mm] x^{2}+cos(1-x) [/mm]
a) Entwickeln Sie f in eine Taylorreihe an der Stelle [mm] x=\pi/4 [/mm] bis zum Glied zweiter Ordnung.
b) Schätzen Sie das Restglied für [mm] x=\pi/3 [/mm] ab, d.h. [mm] R3(\pi/3). [/mm]

Teil a) hab ich folgendermaßen gelöst:

f'(x)=2x-sin(1-x)*(-1) = 2x+sin(1-x)
f''(x)=2+cos(1-x)*(-1)=2-cos(1-x)
f'''(x)=sin(1-x)*(-1)=-sin(1-x)

[mm] f(\pi/4)=\pi/4^{2}+cos(1-\pi/4)=\pi^{2}/16+cos(1-\pi/4) [/mm]
[mm] f'(\pi/4)=2*\pi/4+sin(1-\pi/4)=\pi/2+sin(1-\pi/4) [/mm]
[mm] f''(\pi/4)=2-cos(1-\pi/4) [/mm]

[mm] p(x)=(f^{0}(\pi/4)/0!)*(x-\pi/4)^{0}+(f'(\pi/4)/1!)*(x-\pi/4)^{1}+(f''(\pi/4)/2!)*(x-\pi/4)^{2}+...= [/mm]
[mm] =(\pi^{2}/16+cos(1-\pi/4)+(\pi/2+sin(1-\pi/4))*(x-\pi/4)+(2-cos(1-\pi/4)/2)*(x-\pi/4)^{2} [/mm]

Ist das soweit in Ordnung? Gibt es eine Möglichkeit das alles in Summen-Schreibweise darzustellen, ohne einen Taschenrechner zu benutzen(vgl. Problematik sin/und cos-Werte)?

für Teil b) würde ich folgendermaßen beginnen:
Formel für Restglied:
[mm] ((f^{k+1}(\psi))/(k+1)!)*(x-entwpkt)^{k+1} [/mm]
also:
[mm] (f'''(\psi)/3!)*(x-\pi/3)^{3} [/mm]

Die Gesamtlösung für b) ist dann a) + das Restglied.
Aber wie komme ich zu meinem [mm] \psi? [/mm] Bzw. was muss man da abschätzen? Wie geht man da vor?
Vielen Dank für Eure Hilfe!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Taylorreihen: Überfälligkeit egal
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:32 So 02.07.2006
Autor: RalU

Weiß denn niemand eine Antwort auf meine Fragen? (Ok, is zwar Sonntag und das Fälligkeitsdatum is abgelaufen). Is aber egal. Bin für jeden Hinweis dankbar!!!

Bezug
        
Bezug
Taylorreihen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:20 Mi 05.07.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]