Tensorprodukt über Ring < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 00:13 Fr 19.11.2010 | Autor: | Lippel |
Aufgabe | A kommutativer Ring mit 1, M A-Modul, [mm] $M^{\vee}:=Hom(M,A)$.
[/mm]
Zeige: Für einen weiteren A-Modul N existiert genau ein Homomorphismus von A-Moduln:
[mm] $\Phi: M^{\vee} \otimes_{A} [/mm] N [mm] \to Hom_A(M,N)$
[/mm]
welcher einem Element [mm] $\psi \otimes [/mm] n$ mit [mm] $\psi \in M^{\vee}$ [/mm] und $n [mm] \in [/mm] N$ den Homomorphismus $m [mm] \mapsto \psi(m)n$ [/mm] zuordnet. |
Hallo,
ich habe für obige Aufgabe einen Lösungsvorschlag und würde gerne wissen, ob der so in Ordnung geht, da ich mir im Umgang mit dem Tensorprodukt noch nicht so sicher bin.
Wir betrachten einmal die Abbildung
[mm] $\otimes: M^{\vee} \times [/mm] N [mm] \to M^{\vee} \otimes [/mm] N, [mm] (\psi,n) \mapsto \psi \otimes [/mm] n$
sowie eine weitere Abbildung
[mm] $\phi: M^{\vee} \times [/mm] N [mm] \to [/mm] Hom(M,N), [mm] (\psi,n) \mapsto [/mm] (m [mm] \mapsto \psi(m)n)$
[/mm]
[mm] $\phi$ [/mm] ist wohldefiniert, da [mm] $\psi \in M^{\vee} [/mm] = Hom(M,A)$, d.h. [mm] $\psi(m) \in [/mm] A [mm] \forall [/mm] m [mm] \in [/mm] M$. Also ist [mm] $\psi(m)n \in [/mm] N$, da N abgeschlossen unter skalarer Multiplikation. Daher ist $(m [mm] \mapsto \psi(m)n) \in [/mm] Hom(M,N)$, also [mm] $\phi [/mm] wohldef.
Des weiteren ist [mm] $\phi$ [/mm] bilinear, denn mit [mm] $\alpha, \beta \in M^{\vee}, [/mm] n, p [mm] \in [/mm] N, a [mm] \in [/mm] A$ gilt:
[mm] $\phi(\alpha+\beta,n)(m) [/mm] = [mm] (\alpha+\beta)(m)n [/mm] = [mm] \alpha(m)n+\beta(m)n [/mm] = [mm] \phi(\alpha,n)(m)+\phi(\beta,n)(m)$
[/mm]
[mm] $\phi(\alpha,n+p)(m) [/mm] = [mm] \alpha(m)(n+p) [/mm] = [mm] \alpha(m)n+\alpha(m)p [/mm] = [mm] \phi(\alpha,n)(m)+\phi(\alpha,p)(m)$
[/mm]
[mm] $\phi(a\alpha,n)(m) [/mm] = [mm] (a\alpha)(m)n [/mm] = [mm] a\alpha(m)n [/mm] = [mm] a\phi(\alpha,n)(m) [/mm] = [mm] \phi(\alpha,an)(m)$
[/mm]
Damit folgt mit der universellen Eigenschaft des Tensorprodukts: Es ex. ein eindeutig bestimmter Homomorphismus von A-Moduln [mm] $\tilde{\phi}: M^{\vee} \otimes [/mm] N [mm] \to [/mm] Hom(M,N)$, sodass [mm] $\tilde{\phi} \circ \otimes [/mm] = [mm] \phi$. [/mm] Dieses [mm] $\tilde{\phi}$ [/mm] ist gerade das gesuchte [mm] $\Phi$.
[/mm]
Stimmt das so?
Viele Grüße, Lippel
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 00:22 Fr 19.11.2010 | Autor: | felixf |
Moin!
> A kommutativer Ring mit 1, M A-Modul, [mm]M^{\vee}:=Hom(M,A)[/mm].
>
> Zeige: Für einen weiteren A-Modul N existiert genau ein
> Homomorphismus von A-Moduln:
> [mm]\Phi: M^{\vee} \otimes_{A} N \to Hom_A(M,N)[/mm]
> welcher einem
> Element [mm]\psi \otimes n[/mm] mit [mm]\psi \in M^{\vee}[/mm] und [mm]n \in N[/mm]
> den Homomorphismus [mm]m \mapsto \psi(m)n[/mm] zuordnet.
> Hallo,
>
> ich habe für obige Aufgabe einen Lösungsvorschlag und
> würde gerne wissen, ob der so in Ordnung geht, da ich mir
> im Umgang mit dem Tensorprodukt noch nicht so sicher bin.
>
> Wir betrachten einmal die Abbildung
> [mm]\otimes: M^{\vee} \times N \to M^{\vee} \otimes N, (\psi,n) \mapsto \psi \otimes n[/mm]
>
> sowie eine weitere Abbildung
> [mm]\phi: M^{\vee} \times N \to Hom(M,N), (\psi,n) \mapsto (m \mapsto \psi(m)n)[/mm]
>
> [mm]$\phi$[/mm] ist wohldefiniert, da [mm]$\psi \in M^{\vee}[/mm] =
> Hom(M,A)$, d.h. [mm]$\psi(m) \in[/mm] A [mm]\forall[/mm] m [mm]\in[/mm] M$. Also ist
> [mm]$\psi(m)n \in[/mm] N$, da N abgeschlossen unter skalarer
> Multiplikation. Daher ist $(m [mm]\mapsto \psi(m)n) \in[/mm]
> Hom(M,N)$, also [mm]$\phi[/mm] wohldef.
Strenggenommen musst du noch zeigen, dass [mm] $\phi(\psi, [/mm] n) [mm] \in [/mm] Hom(M, N)$ ist, also $R$-linear ist.
> Des weiteren ist [mm]\phi[/mm] bilinear, denn mit [mm]\alpha, \beta \in M^{\vee}, n, p \in N, a \in A[/mm]
> gilt:
> [mm]\phi(\alpha+\beta,n)(m) = (\alpha+\beta)(m)n = \alpha(m)n+\beta(m)n = \phi(\alpha,n)(m)+\phi(\beta,n)(m)[/mm]
>
> [mm]\phi(\alpha,n+p)(m) = \alpha(m)(n+p) = \alpha(m)n+\alpha(m)p = \phi(\alpha,n)(m)+\phi(\alpha,p)(m)[/mm]
>
> [mm]\phi(a\alpha,n)(m) = (a\alpha)(m)n = a\alpha(m)n = a\phi(\alpha,n)(m) = \phi(\alpha,an)(m)[/mm]
>
> Damit folgt mit der universellen Eigenschaft des
> Tensorprodukts: Es ex. ein eindeutig bestimmter
> Homomorphismus von A-Moduln [mm]\tilde{\phi}: M^{\vee} \otimes N \to Hom(M,N)[/mm],
> sodass [mm]\tilde{\phi} \circ \otimes = \phi[/mm]. Dieses
> [mm]\tilde{\phi}[/mm] ist gerade das gesuchte [mm]\Phi[/mm].
>
> Stimmt das so?
Ja.
LG Felix
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 00:38 Fr 19.11.2010 | Autor: | Lippel |
Super, vielen Dank für die schnelle Antwort, Felix.
Linearität wird an der einen Stelle noch hinzugefügt.
LG Lippel
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 00:46 Fr 19.11.2010 | Autor: | felixf |
Moin!
> Super, vielen Dank für die schnelle Antwort, Felix.
Bitte :)
> Linearität wird an der einen Stelle noch hinzugefügt.
Die Linearitaet sieht man hier zwar sofort, aber je nachdem wie kritisch der Korrekteur ist ist es besser das mit anzugeben
LG Felix
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 17:37 Di 23.11.2010 | Autor: | Lippel |
Aufgabe | A kommutativer Ring mit 1, M A-Modul, $ [mm] M^{\vee}:=Hom(M,A) [/mm] $.
Zeige: Für einen weiteren A-Modul N existiert genau ein Homomorphismus von A-Moduln:
$ [mm] \Phi: M^{\vee} \otimes_{A} [/mm] N [mm] \to Hom_A(M,N) [/mm] $
welcher einem Element $ [mm] \psi \otimes [/mm] n $ mit $ [mm] \psi \in M^{\vee} [/mm] $ und $ n [mm] \in [/mm] N $ den Homomorphismus $ m [mm] \mapsto \psi(m)n [/mm] $ zuordnet. |
Hallo,
in einem weiteren Aufgabenteil soll nun gezeigt werden, dass [mm] $\Phi$ [/mm] ein Isomorphismus ist, wenn M frei von endlichem Rang ist. Außerdem wird gefragt, ob es sich auch im Allgemeinen um einen Isomorphismus handelt.
Ich schaffe es leider nicht, dies zu zeigen, hier mein Ansatz:
1. Injektivität:
[mm] $\Phi:M^{\vee} \otimes [/mm] N [mm] \to [/mm] Hom(M,N)$
Seien also [mm] $\psi \otimes [/mm] n, [mm] \psi' \otimes [/mm] n' [mm] \in M^{\vee} \otimes [/mm] N$ mit [mm] $\Phi (\psi \otimes [/mm] n) = [mm] \Phi (\psi' \otimes [/mm] n')$
[mm] $\Rightarrow$ [/mm] für alle $m [mm] \in [/mm] M: [mm] \psi(m)n=\psi'(m)n'$
[/mm]
[mm] $\Rightarrow$ [/mm] für alle $m [mm] \in [/mm] M: [mm] \psi(m)n-\psi'(m)n'=0$
[/mm]
[mm] $\Rightarrow$ [/mm] für alle $m [mm] \in [/mm] M: [mm] (n\psi-n'\psi')(m)=0$
[/mm]
[mm] $\Rightarrow n\psi-n'\psi'=0$
[/mm]
Wie kann ich nun schießen, dass [mm] $\psi \otimes [/mm] n = [mm] \psi' \otimes [/mm] n'$?
Wo spielt es eine Rolle dass M endlich frei ist?
Oder muss ich anders ansetzen?
2. Surjektivität
Ich muss zeigen, dass es für ein [mm] $\phi \in [/mm] Hom(M,N)$ ein [mm] $\psi \otimes [/mm] n [mm] \in M^{\vee} \otimes [/mm] N$ gibt, sodass [mm] $\Phi(\psi \otimes [/mm] n) = [mm] \phi$.
[/mm]
Hier weiß ich nicht wie ich ein solches Element konstruieren soll. Es ist ja [mm] $\psi \in [/mm] Hom(M,A)$, d.h. [mm] $\psi(m) \in [/mm] A$. Dies ist noch so mit einem $n [mm] \in [/mm] N$ zu multiplizieren, dass [mm] $n\psi(m) [/mm] = [mm] \phi(m)$. [/mm] Ich habe keine Ahnung wie ich ein passendes [mm] $\psi \otimes [/mm] n$ finden kann.
Kann mir hier jemand mit einem Ansatz helfen?
Viele Grüße, Lippel
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 19:00 Di 23.11.2010 | Autor: | felixf |
Moin Lippel!
> A kommutativer Ring mit 1, M A-Modul, [mm]M^{\vee}:=Hom(M,A) [/mm].
>
> Zeige: Für einen weiteren A-Modul N existiert genau ein
> Homomorphismus von A-Moduln:
> [mm]\Phi: M^{\vee} \otimes_{A} N \to Hom_A(M,N)[/mm]
> welcher einem
> Element [mm]\psi \otimes n[/mm] mit [mm]\psi \in M^{\vee}[/mm] und [mm]n \in N[/mm]
> den Homomorphismus [mm]m \mapsto \psi(m)n[/mm] zuordnet.
>
> in einem weiteren Aufgabenteil soll nun gezeigt werden,
> dass [mm]\Phi[/mm] ein Isomorphismus ist, wenn M frei von endlichem
> Rang ist. Außerdem wird gefragt, ob es sich auch im
> Allgemeinen um einen Isomorphismus handelt.
>
> Ich schaffe es leider nicht, dies zu zeigen, hier mein
> Ansatz:
Erstmal vorweg: du scheinst dem Irrtum aufgelegen zu sein, dass jedes Element in $A [mm] \otimes [/mm] B$ die Form $a [mm] \otimes [/mm] b$ mit $a [mm] \in [/mm] A$ und $b [mm] \in [/mm] B$ hat. Das stimmt aber nicht! Elemente sind im Allgemeinen Summen [mm] $\sum_{i=1}^n a_i \otimes b_i$ [/mm] mit [mm] $a_i \in [/mm] A$, [mm] $b_i \in [/mm] B$!
Bei dieser Aufgabe solltest du dir erstmal ueberlegen, dass du $M$ durch einen dazu isomorphen Modul ersetzen kannst, naemlich durch [mm] $R^n$ [/mm] mit $n [mm] \in \IN$ [/mm] passend.
Dann beachte, dass [mm] $Hom_A(A \oplus [/mm] B, C) [mm] \cong Hom_A(A, [/mm] C) [mm] \oplus Hom_A(B, [/mm] C)$ ist.
Damit kannst du die Aussage darauf zurueckfuehren, dass du [mm] $Hom_A(R, [/mm] R) [mm] \otimes_A [/mm] N [mm] \to Hom_A(R, [/mm] N)$ zeigen musst.
Wenn du jetzt den Isomorphismus [mm] $Hom_A(R, [/mm] R) [mm] \cong [/mm] R$ mit einbeziehst und ebenso die Isomorphismen $R [mm] \otimes_A [/mm] N [mm] \cong [/mm] N$ sowie [mm] $Hom_A(R, [/mm] N) [mm] \cong [/mm] N$, dann siehst du sehr schnell, dass dies stimmt.
(Du musst die Isomorphismen allerdings explizit benutzen, und nicht einfach nur dass es "irgendwelche" gibt. Die Verkettung muss ja der urspruengliche Homomorphismus sein!)
> 1. Injektivität:
> [mm]\Phi:M^{\vee} \otimes N \to Hom(M,N)[/mm]
> Seien also [mm]\psi \otimes n, \psi' \otimes n' \in M^{\vee} \otimes N[/mm]
> mit [mm]\Phi (\psi \otimes n) = \Phi (\psi' \otimes n')[/mm]
>
> [mm]\Rightarrow[/mm] für alle [mm]m \in M: \psi(m)n=\psi'(m)n'[/mm]
>
> [mm]\Rightarrow[/mm] für alle [mm]m \in M: \psi(m)n-\psi'(m)n'=0[/mm]
>
> [mm]\Rightarrow[/mm] für alle [mm]m \in M: (n\psi-n'\psi')(m)=0[/mm]
>
> [mm]\Rightarrow n\psi-n'\psi'=0[/mm]
> Wie kann ich nun schießen,
> dass [mm]\psi \otimes n = \psi' \otimes n'[/mm]?
Dazu musst du ein wenig mehr arbeiten (falls es ueberhaupt stimmt). Vermutlich wird's auch etwas technischer. Allerdings brauchst du das gar nicht.
> Wo spielt es eine Rolle dass M endlich frei ist?
Das brauchst du moeglicherweise gar nicht...
Du schaust dir ja auch nur eine kleine Teilmenge von [mm] $M^\vee \otimes_A [/mm] N$ an.
> Oder muss ich anders ansetzen?
Ja.
> 2. Surjektivität
> Ich muss zeigen, dass es für ein [mm]\phi \in Hom(M,N)[/mm] ein
> [mm]\psi \otimes n \in M^{\vee} \otimes N[/mm] gibt, sodass
> [mm]\Phi(\psi \otimes n) = \phi[/mm].
> Hier weiß ich nicht wie ich
> ein solches Element konstruieren soll.
Das geht gar nicht, weil die Aussage so falsch ist.
LG Felix
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 21:59 Mi 24.11.2010 | Autor: | Lippel |
Oh Mann, da war ich ja ganz schön auf dem Holzweg.
Werde nun versuchen die Aufgabe mit deinem Ansatz zu lösen, aber schonmal ein riesiges Dankeschön für deine wie immer sehr hilfreichen Tipps.
LG Lippel
|
|
|
|