www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Terme
Terme < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Terme: Terme mit Summen- oder Produkt
Status: (Frage) beantwortet Status 
Datum: 17:01 Fr 25.10.2013
Autor: Smuji

Aufgabe
Schreiben Sie folgende Terme mit Summen- und / Produktzeichen.

(a) 1+4+9+16+...+225

(b) [mm] \bruch{1}{2}+\bruch{1}{4}+\bruch{1}{8}+\bruch{1}{16}...+\bruch{1}{256} [/mm]

(c) [mm] 1+x+x^{2}+x^{3}....+x^{n} [/mm]

(d) [mm] \bruch{1}{2}+\bruch{1}{2}^{2}+\bruch{1}{2}^{3}...+\bruch{1}{2}^{n} [/mm]

Hallo,


ich habe solche Aufgaben noch nie gerechnet und habe hier auch die Lösungen liegen, aber irgendwie kommt mir nicht in den Kopf, wie man direkt darauf kommt.....

Bei der Ersten kommei ch noch so einigermaßen mit

[mm] \summe_{i=1}^{15} i^{2} [/mm]


nun bräuchte ich halt eine Art Erklärung, denn in Youtube findei ch keine passenden VIdeos dazu.

was genau bedeuten der index a la i = 1   und  rechts neben der summe  dieses [mm] i^{2} [/mm] ....

angeblich, so wurde mir gesagt sei i= der startwert und die 15 der endwert....tolles deutsch....


nur wenn ich mir aufgabe C anschaue, die sieht laut lösungsblatt so aus:

[mm] \summe_{i=0}^{n} x^{i} [/mm]

die aufgabe stattet aber bei 1+x und nicht bei 0 ?!? irgendwie denke ich wahrscheinlich komplizierter als es ist... wie kann man da am einfachsten rangehen ?!?  vielen dank schonmal

        
Bezug
Terme: Variablen
Status: (Antwort) fertig Status 
Datum: 17:13 Fr 25.10.2013
Autor: Infinit

Hallo Smuji,
der Index i beschreibt die einzusetzende Variable und diese läuft von einem Startwert bis zu einem bestimmten Endwert. Diese Variable i kann selbst wieder alle Formen von Funktionen annehmen, die aus der Algebra bekannt sind. In Deiner ersten Aufgabe sind es die Quadratzahlen und daher rührt das Quadrat bei der Variablen unter dem Summenzeichen. Bei c) ist das etwas tricky, wie ich gerne zugebe. In Deiner Summe taucht die Variable x auf und dann muss man wissen, dass eine beliebige reelle Variable zur Potenz 0 als 1 definiert ist. In anderen Worten:
[mm] x^0 = 1 [/mm]
Daher kommt der Exponent 0 ins Spiel und demzufolge die Summenschreibweise
[mm] 1 + x + x^2 + x^3 + x^4 + \ldots + x^n = \sum_{i=0}^n x^i [/mm]
Viele Grüße,
Infinit

Bezug
                
Bezug
Terme: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:43 Sa 26.10.2013
Autor: Smuji

vielen dank,

nur verstehe ich dann dem dozenten seine eine lösung nicht

aufgabe D kommt laut meinem gekritzelten hier aufm blatt(was ich abgeschrieben habe) folgendes raus.

[mm] \summe_{i=1}^{n} \bruch{1}{2^{2}} [/mm]      


laut meiner rechnung allerdings:

[mm] \summe_{i=1}^{n} \bruch{1}{2}^{i} [/mm]



Bezug
                        
Bezug
Terme: Antwort
Status: (Antwort) fertig Status 
Datum: 13:47 Sa 26.10.2013
Autor: Valerie20


> vielen dank,

>

> nur verstehe ich dann dem dozenten seine eine lösung
> nicht

>

> aufgabe D kommt laut meinem gekritzelten hier aufm
> blatt(was ich abgeschrieben habe) folgendes raus.

>

> [mm]\summe_{i=1}^{n} \bruch{1}{2^{2}}[/mm]

[notok] Da hast du dich verschrieben.


>
>

> laut meiner rechnung allerdings:

>

> [mm]\summe_{i=1}^{n} \bruch{1}{2}^{i}[/mm]

[ok] Das ist die Lösung.

Man kann das natürlich auch so schreiben:

[mm]\summe_{i=1}^{n} \bruch{1}{2}^{i}=\summe_{i=1}^{n} \bruch{1}{2^i}[/mm]

>
>

Valerie

Bezug
                                
Bezug
Terme: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:57 Sa 26.10.2013
Autor: Smuji

vielen dank !

Bezug
                        
Bezug
Terme: Klammern
Status: (Antwort) fertig Status 
Datum: 13:53 Sa 26.10.2013
Autor: Loddar

Hallo Smuji!


> laut meiner rechnung allerdings: [mm]\summe_{i=1}^{n} \bruch{1}{2}^{i}[/mm]

Fast - es fehlen noch entscheidende Klammern:  [mm] $\summe_{i=1}^{n} \left(\bruch{1}{2}\right)^{i}$ [/mm]


Denn bei Deiner Darstellung gilt:  [mm] $\bruch{1}{2}^{i} [/mm] \ = \ [mm] \bruch{1}{2} [/mm] \ = \ const.$


Gruß
Loddar

Bezug
                                
Bezug
Terme: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:56 Sa 26.10.2013
Autor: Smuji

vielen dank...da hast du natürlich recht.

danke dir.




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]