Teststatistik < Stochastik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 17:42 Do 21.07.2005 | Autor: | Tim22 |
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Hallo,
ich bin während meiner vorbereitung auf eine Prüfung auf 2 interessante aber leider für mich nicht lösbare aufgaben gestoßen. Wenn mir eine oder einer von euch dabei helfen könnte wäre ich euch super dankbar...
Aufgabe 1:
Ein Bäcker liefert an einen Partyservice 1000 Brötchen. Mittels einer Zufallsstichprobe von n=81 möchte der Partyservice das Sollgewicht eines Brötchens von 40g überprüfen. Das Gewicht sei hierbei annähernd normalverteilt mit [mm] sigma^2 [/mm] = 16 und mittelwert x = 38,6
Wird die Lieferung bei einem Signifikanzniveau von 1% angenommen oder nicht (H0 : [mm] \mu [/mm] >= 40)? Bestimme k = [mm] (c_u [/mm] + 10) wenn die Lieferung angenommen wird und k = [mm] (c_u [/mm] - 10) wenn die Lieferung abgelehnt wird.
(3 Nachkommastellen)
Aufgabe 2:
Ein Jäger behauptet, dass er höchstens 10% aller Wildenten, auf die er schießt, nicht trifft. An einem Tag gab er 20 Schüsse ab und traf nur 15 mal. Kann die Behauptung des Jägers widerlegt werden [mm] (H_0 [/mm] : [mm] \mu [/mm] <= 0,1 und [mm] \alpha [/mm] = 0,05)
Wird die Nullhypothese abgelehnt, so bestimmen sie k = (10 - [mm] c_o), [/mm] wird die Nullhypothese nicht abgelehnt, so bestimmen sie k = [mm] (c_o [/mm] + 10)
Leider bin ich bei beiden Aufgaben etwas überfordert und komme daher nicht auf einen eigenen Ansatz. Es wäre echt super wenn mir jemand von euch dabei helfen könnte, da ich schon morgen meine Prüfung habe...vielen vielen Dank schon mal im Voraus. Tim
|
|
|
|
Hallo Tim!
> Aufgabe 1:
> Ein Bäcker liefert an einen Partyservice 1000 Brötchen.
> Mittels einer Zufallsstichprobe von n=81 möchte der
> Partyservice das Sollgewicht eines Brötchens von 40g
> überprüfen. Das Gewicht sei hierbei annähernd
> normalverteilt mit [mm]sigma^2[/mm] = 16 und mittelwert x = 38,6
> Wird die Lieferung bei einem Signifikanzniveau von 1%
> angenommen oder nicht (H0 : [mm]\mu[/mm] >= 40)? Bestimme k = [mm](c_u[/mm] +
> 10) wenn die Lieferung angenommen wird und k = [mm](c_u[/mm] - 10)
> wenn die Lieferung abgelehnt wird.
> (3 Nachkommastellen)
Also hier musst Du den (einseitigen) Gauß-Test anwenden. Um diesen Test durchzuführen, musst Du die Realisierung der Teststatistik berechnen und anschließend mit dem entsprechenden Normalverteilungsquantil vergleichen. Hier ergibt sich für die Realisierung
[mm] $T(x_1,\ldots,x_{81})=\frac{\bar{x}-\mu_0}{\sigma/\sqrt{81}}=\frac{38.6-40}{4/9}=-3.15.$
[/mm]
Wir lehnen [mm] $H_0$ [/mm] ab, wenn die Realisierung zu klein ist, genauer wenn sie kleiner ist als das [mm] $\alpha$-Quantil [/mm] der Standard-Normalverteilung, also kleiner als [mm] $u_{0.01}=-2.33$. [/mm] Das ist der Fall, also wird die Nullhypothese abgelehnt. Was die Frage nach dem $k$ betrifft, bin ich leider ratlos, was [mm] $c_u$ [/mm] bedeutet. Sorry...
> Aufgabe 2:
> Ein Jäger behauptet, dass er höchstens 10% aller
> Wildenten, auf die er schießt, nicht trifft. An einem Tag
> gab er 20 Schüsse ab und traf nur 15 mal. Kann die
> Behauptung des Jägers widerlegt werden [mm](H_0[/mm] : [mm]\mu[/mm] <= 0,1
> und [mm]\alpha[/mm] = 0,05)
> Wird die Nullhypothese abgelehnt, so bestimmen sie k = (10
> - [mm]c_o),[/mm] wird die Nullhypothese nicht abgelehnt, so
> bestimmen sie k = [mm](c_o[/mm] + 10)
Bezeichnet man mit $X$ die Anzahl der Schüsse des Jägers, die ihr Ziel nicht finden, dann ist $X$ binomialverteilt mit Parametern $n=20$ und unbekanntem p. Daher finde ich die Nullhypothese [mm] $\mu\le [/mm] 0,1$ ziemlich verwirrend. Es sollte p statt [mm] $\mu$ [/mm] sein, oder?
Beim (exakten) Binomialtest ist die Teststatistik einfach das eben eingeführte $X$ (Realisierung 20-15=5). Um nun die Grenze $c$ zu finden, ab der [mm] $H_0$ [/mm] abgelehnt wird (hier wird man ja ablehnen, wenn er zu viele nicht trifft, also wenn die Realisierung zu groß ist), setzt Du so an: Bestimme c möglichst klein, so dass
[mm] $P(X>c)\le \alpha=0.05$,
[/mm]
wobei Du nun für X von einer B(20,0.1)-verteilten Zufallsvariablen ausgehst. Dann vergleichst Du wieder die Realisierung mit der Grenze $c$ und triffst die Entscheidung, ob [mm] $H_0$ [/mm] abgelehnt wird oder nicht. Wie oben weiß ich aber nicht, was der zweite Teil der Frage soll...
Statt dem Binomialtest kann man approximativ auch mit der Normalverteilung arbeiten, aber das wäre bei $n=20$ recht ungenau.
> Leider bin ich bei beiden Aufgaben etwas überfordert und
> komme daher nicht auf einen eigenen Ansatz. Es wäre echt
> super wenn mir jemand von euch dabei helfen könnte, da ich
> schon morgen meine Prüfung habe...vielen vielen Dank schon
> mal im Voraus. Tim
Ist aber ganz schön knapp...
Viele Grüße
Brigitte
|
|
|
|