www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - Trapez schneidet Pyramide
Trapez schneidet Pyramide < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Trapez schneidet Pyramide: Aufgaben
Status: (Frage) beantwortet Status 
Datum: 17:55 Mo 13.06.2005
Autor: Morgenroth

Es geht um folgende Aufgabe:
Die quadratische Pyramide mit den Ecken A (-3/-3/0), B (3/-3/0), C (3/3/0), D (-3/3/0) und der Spitze S (0/0/9) wird von der Ebene E:  [mm] x_{2} [/mm] + 4 [mm] x_{3} [/mm] = 10 in einer Trapezfläche geschnitten.

a) Bestimme die Durchstoßpunkte der Kanten durch die Ebene E und zeichne die Pyramide und das Trapez im Schrägbild eines KJoordinatensystems.
b) Bestimme den Flächeninhalt des Trapezes.
c) Bestimme den Abstand der Spitze S von der Schnittebene E.
d) Bestimme das Volumen der Teilkörper, in welche die Pyramide durch E zerlegt wird.

Teil a) habe ich schon, wär aber trotzdem gut, nochmals die Ergebnisse zu vergleichen.
Wer kann mir helfen?
Vielen Dank im Voraus! ;-)

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt: www.emath.de


        
Bezug
Trapez schneidet Pyramide: Antwort
Status: (Antwort) fertig Status 
Datum: 20:17 Mo 13.06.2005
Autor: leonhard

Erst mal ein paar Tipps, bitte zeig deine Ansätze

a) gib bitte die Punkte an, die Du vergleichen möchtest.
b) Du brauchst die Längen der beiden parallelen Seiten und die Höhe um
den Flächeninhalt auszurechnen
c) Bring die Ebenengleichung in Hess'sche Normalform und setz den Punkt ein
d) Das obere Stück ist wieder eine Pyramide. Volumen = Grundfläche mal Höhe durch 3

HTH
Leonhard

Bezug
                
Bezug
Trapez schneidet Pyramide: Frage
Status: (Frage) beantwortet Status 
Datum: 20:33 Mo 13.06.2005
Autor: Morgenroth

Dann war meine Idee schon richtig.
Also bei a)
(-2 / -2 /3),
(2 /-2 /3),
(2/4/11 / 2/4/11 / 1/10/11),
(-2/4/11 / 2/4/11 / 1/10/11)

b) Seiten: 4 und 4/8/11; Höhe: 6,2 --> 27,05

Danke erstmal.
Den Rest werde ich gleich mal versuchen. Wäre schön, wenn du schauen könntest, ob a und b so richtig sind. ;-)

Bezug
                        
Bezug
Trapez schneidet Pyramide: Antwort
Status: (Antwort) fertig Status 
Datum: 20:50 Mo 13.06.2005
Autor: leonhard


>  Also bei a)
>  (-2 / -2 /3),
> (2 /-2 /3),
> (2/4/11 / 2/4/11 / 1/10/11),
> (-2/4/11 / 2/4/11 / 1/10/11)

Das ist richtig, aber deine Schreibweise ist nicht lesbar mit all diesen /
[mm](2\bruch{4}{11} / 2\bruch{4}{11} / 1\bruch{10}{11})[/mm]
oder einfach ( 26/11 | 26/11 | 21/11 ) kann man viel besser lesen.

> b) Seiten: 4 und 4/8/11; Höhe: 6,2 --> 27,05

Da stimmen leider nur die Seiten
Weil hier alles so schön symmetrisch ist, kannst Du die Höhe des Trapezes als Abstand der Seitenmittelpunkte bestimmen (Skizze!)

Wie wird die Fläche eines Trapezes bestimmt?

Bezug
        
Bezug
Trapez schneidet Pyramide: Frage
Status: (Frage) beantwortet Status 
Datum: 21:24 Mo 13.06.2005
Autor: Morgenroth

Mittelpunkte (0/-2/3) und (0/ 26/11 / 21/11)
Höhe wäre dann 6,57.
Ich hatte vorher den Abstand von der Geraden der Durschstoßpunkte CS und DS zu Durchstoßpunkt A berechnet. Das müsste doch aber auch gehen.

Formel Trapez: 1/2 * (a + b) * h oder nicht? --> 28,67 ?

;-)


Ach ja bei Teilaufgabe c) kommt doch 9 raus. Das sieht man doch schon beim hingucken!

Bezug
                
Bezug
Trapez schneidet Pyramide: Antwort
Status: (Antwort) fertig Status 
Datum: 21:56 Mo 13.06.2005
Autor: leonhard


> Mittelpunkte (0/-2/3) und (0/ 26/11 / 21/11)
>  Höhe wäre dann 6,57.

Mittelpunkte OK, Höhe nicht, ich bekomme ca 4,5

>  Ich hatte vorher den Abstand von der Geraden der
> Durschstoßpunkte CS und DS zu Durchstoßpunkt A berechnet.
> Das müsste doch aber auch gehen.

Ja

>  
> Formel Trapez: 1/2 * (a + b) * h oder nicht? --> 28,67 ?

Ja

> Ach ja bei Teilaufgabe c) kommt doch 9 raus. Das sieht man
> doch schon beim hingucken!

Lies c) nochmals durch.

Bezug
                
Bezug
Trapez schneidet Pyramide: Frage
Status: (Frage) beantwortet Status 
Datum: 22:24 Mo 13.06.2005
Autor: Morgenroth

Ja, da hast du Recht!
Ih habe da unter der Wurzel einen falschen vektor eingesetzt.
Höhe: 4,5 und Volumen: 19,64

c) Wie blöd! Natürlich vom Trapez: 6,31 ? (mit meiner Zeichnung passt's zumindestens!)

d) Pyramide, ist das nicht 1/3 * G * h?
Ich würde einfach die obere Pyramide ausrechnen, und diese dann von der gesamten abziehen, um das untere Volumen zu berechnen!

obere: 34,31
Gesamt: 108
untere: 66,69

Bezug
                        
Bezug
Trapez schneidet Pyramide: Antwort
Status: (Antwort) fertig Status 
Datum: 23:50 Mo 13.06.2005
Autor: leonhard


> Ja, da hast du Recht!
>  Ih habe da unter der Wurzel einen falschen vektor
> eingesetzt.
> Höhe: 4,5 und Volumen: 19,64

nicht Volumen sondern Flächeninhalt, sonst ok.

> c) Wie blöd! Natürlich vom Trapez: 6,31 ? (mit meiner
> Zeichnung passt's zumindestens!)

Ja

> d) Pyramide, ist das nicht 1/3 * G * h?

Ja, da habe ich einen Fehler gemacht.

>  Ich würde einfach die obere Pyramide ausrechnen, und diese
> dann von der gesamten abziehen, um das untere Volumen zu
> berechnen!

genau

> obere: 34,31

nein, da habe ich 41.3

>  Gesamt: 108

ja



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]