www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Komplexe Zahlen" - Trigonometrische Identitäten 2
Trigonometrische Identitäten 2 < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Trigonometrische Identitäten 2: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:26 So 31.10.2010
Autor: Theoretix

Aufgabe
Beweisen Sie für alle z [mm] \varepsilon \IC [/mm] die Identität:

sin(2z)= 2sinz cosz

Hallo zusammen, ich nutze die Definition:

sin [mm] z=\bruch{1}{2i} (e^{iz}-e^{-iz} [/mm]

Mein Problem, wenn ich das jetzt für sin(2z) und 2sin(z) darstellen möchte:
Wie mache ich das, was ist verschieden?
Also ich nehme mal an, wenn ich alles " *2 " schreibe erhalte ich 2sin(z):
(gekürzt) [mm] \bruch{e^{iz}-e^{-iz}}{i} [/mm] (?)
Wie stelle ich aber sin(2z) dar? einfach die ganzen "z" in dem Term " *2 "?

Liebe Grüße

        
Bezug
Trigonometrische Identitäten 2: Antwort
Status: (Antwort) fertig Status 
Datum: 18:57 So 31.10.2010
Autor: schachuzipus

Hallo Julian,


> Beweisen Sie für alle z [mm]\varepsilon \IC[/mm] die Identität:
>  
> sin(2z)= 2sinz cosz
>  Hallo zusammen, ich nutze die Definition:
>  
> sin [mm]z=\bruch{1}{2i} (e^{iz}-e^{-iz}[/mm]
>  
> Mein Problem, wenn ich das jetzt für sin(2z) und 2sin(z)
> darstellen möchte:
>  Wie mache ich das, was ist verschieden?
>  Also ich nehme mal an, wenn ich alles " *2 " schreibe
> erhalte ich 2sin(z):
>  (gekürzt) [mm]\bruch{e^{iz}-e^{-iz}}{i}[/mm] (?)
>  Wie stelle ich aber sin(2z) dar? einfach die ganzen "z" in
> dem Term " *2 "?

Ja, statt [mm]z[/mm] steht dann überall [mm]2z[/mm]

Rechne beide Seiten aus:

[mm]\sin(2z)=\frac{1}{2i}\cdot{}\left(e^{2iz}-e^{-2iz}\right)[/mm]

Und auf der anderen Seite [mm]2\sin(z)\cos(z)=2\frac{1}{2i}\cdot{}\left(e^{iz}-e^{-iz}\right)\cdot{}\frac{1}{2}\cdot{}\left(e^{iz}+e^{-iz}\right)[/mm]

Das rechne doch mal aus, das bisschen Bruchrechnung und ausmultiplizieren sollte doch kein Problem sein...

>  
> Liebe Grüße

Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]