Umformung-Verteilungsfunktion < Stochastik < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Sei X eine Zufallsvariable mit Verteilungsfunktion [mm] F_{X}.
[/mm]
(a) Zeigen Sie, dass dann für a > 0 und b [mm] \in \IR [/mm] die transformierte Zufallsvariable aX + b die Verteilungsfunktion [mm] F_{a X+b}(t)=F_{X}((t-b)/a), [/mm] t [mm] \in \IR, [/mm] besitzt.
(b) Weisen Sie nach, dass [mm] f_{aX+b}(t)=f_{X}((t-b)/a)/a, [/mm] t [mm] \in \IR, [/mm] eine Dichte von aX+b definiert, wenn X die Dichte [mm] f_{X} [/mm] besitzt. |
Hallo liebe Stochastik-Profis,
wir sind bei dieser Aufgabe auf folgende Lösung für (a) gekommen:
Die Wahrscheinlichkeitsverteilung einer Zufallsvariable X ist definiert als [mm] F_{X}(t)=P(X \le [/mm] t).
Mit [mm] X\to [/mm] aX+b erhalten wir
[mm] F_{aX+b}(t)=P(aX+b \le [/mm] t).
Wir ziehen nun a und b durch -b und /a auf die rechte Seite der Ungleichung und erhalten P(X [mm] \le [/mm] (t-b)/a) was wiederum [mm] F_{X}(t-b)/a) [/mm] entspricht. Ist dies so korrekt?
Zu (b): Hier wissen wir nicht, wie wir die Umformung angehen sollen.
|
|
|
|
zu a) ich glaube auch das das okay ist.
zu b) Man leitet wieder ab, und zwar die Funktion [mm] F_X((x-b)/a) [/mm] nach x. Nach dem Prinzip Innere mal äußere Ableitung dann ist ((x-b)/a)'=1/a und [mm] F'((x-b)/a)=f_X((x-b)/a). [/mm] Aber mir fällt wieder nicht wirklich auf, warum man das als eine Verkettung von Funktionen betrachten darf.
|
|
|
|
|
Auf die Ableitung f(X)((t-b/a) = 1/a kommen wir ebenfalls. Dort sind wir aber auch gerade stehen geblieben. Wenn wir uns die Aufgabe durchlesen, verstehen wir, dass X die Dichte [mm] f_{X} [/mm] besitzt und wir nachweisen sollen, dass aX+b die Dichte [mm] f_{aX+b}(t)=f_{X}((t-b)/a)/a, [/mm] t [mm] \in \IR [/mm] besitzt. Die zweite Teilung durch a bei [mm] f_{X}((t-b)/a)/a [/mm] verwirrt uns leider komplett.
|
|
|
|
|
Ihr kennt doch bestimmt das Prinzip der Kettenregel, z.B. [mm] F(x)=(f(x))^2 [/mm] mit [mm] f(x)=1+x^2 [/mm] dann ist das doch das gleiche wie [mm] (F\circ [/mm] f)(x) und die Ableitung davon ist [mm] (F\circ [/mm] f)'(x)=F'(f(x))f'(x). Nun ist F'(y)=2y mit [mm] y=f(x)=1+x^2 [/mm] und f'(x)=2x, daraus folgt [mm] F'(f(x))f'(x)=2(1+x^2)2x. [/mm] Überträgt man das auf die Verteilungsfunktion [mm] F_X [/mm] dann besitzt diese die Ableitung [mm] f_X [/mm] wegen [mm] F_X(t)=\int_{-\infty}^t f_X(t) [/mm] dt und [mm] f_X(t) [/mm] besitzt wiederum eine Ableitung nach t, dann fügt man das nach dem Prinzip F'(f(x))f'(x) wieder zusammen. Aber wie gesagt leuchtet mir selbst nicht wirklich wieder ein warum das auf die Verteilungsfunktionen so ohne weiteres anwendbar ist.
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 23:20 Di 02.07.2013 | Autor: | Fry |
Man kann ja einfach die Ableitung beider Seiten der Gleichung aus 1) bilden und dann steht da entsprechend der Kettenregel
[mm] $f_{aX+b}(t)=F'_{aX+b}(t)=(F_{X}(\frac{t-b}{a}))'=F'_{X}(\frac{t-b}{a})*\frac{1}{a}=f_{X}(\frac{t-b}{a})*\frac{1}{a}$
[/mm]
wobei der Faktor 1/a die Ableitung der inneren Funktion t-b/a ist.
|
|
|
|