Umformung < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 16:21 Sa 12.12.2015 | Autor: | Skyrula |
Aufgabe | Zeige, dass folgende Vektoren orhtogonal sind:
[mm] \vec{u}=a\vec{b}+b\vec{a} [/mm] und [mm] \vec{v}=b\vec{a}-a\vec{b}
[/mm]
mit [mm] a=|\vec{a}| [/mm] und [mm] b=|\vec{b}| [/mm] |
Hier die Lösung:
[mm] \vec{u}\vec{v}=(a\vec{b}+b\vec{a})(b\vec{a}-a\vec{b})=ab\vec{a}\vec{b}-a^2b^2-b^2a^2-ab\vec{a}\vec{b}=-|\vec{a}|^2|\vec{b}|^2+|\vec{a}|^2|\vec{b}|^2=0
[/mm]
Nun zu meiner Frage(n):
wie kommt das zweite - in dem Schritt [mm] ab\vec{a}\vec{b}-a^2b^2-b^2a^2-ab\vec{a}\vec{b} [/mm] zustande, und wie genau kommt man dann von [mm] ab\vec{a}\vec{b}-a^2b^2-b^2a^2-ab\vec{a}\vec{b} [/mm] auf [mm] -|\vec{a}|^2|\vec{b}|^2+|\vec{a}|^2|\vec{b}|^2=0 [/mm] ?
Meiner Ansicht nach, heben sich [mm] ab\vec{a}\vec{b} [/mm] und [mm] -ab\vec{a}\vec{b} [/mm] gegenseitig auf, sodass [mm] -a^2b^2-b^2a^2 [/mm] übrig bleibt.
Also wird [mm] -a^2b^2-b^2a^2 [/mm] zu [mm] -|\vec{a}|^2|\vec{b}|+|\vec{a}|^2|\vec{b}|^2 [/mm] umgewandelt und hier verstehe ich nicht wo das + herkommt und wieso aufeinmal alles im Betrag mit Vektorpfeilen steht.
Ich hoffe, dass mir jemand helfen kann.
Danke im Vorraus
|
|
|
|
Hallo,
> Zeige, dass folgende Vektoren orhtogonal sind:
> [mm]\vec{u}=a\vec{b}+b\vec{a}[/mm] und [mm]\vec{v}=b\vec{a}-a\vec{b}[/mm]
>
> mit [mm]a=|\vec{a}|[/mm] und [mm]b=|\vec{b}|[/mm]
> Hier die Lösung:
>
> [mm]\vec{u}\vec{v}=(a\vec{b}+b\vec{a})(b\vec{a}-a\vec{b})=ab\vec{a}\vec{b}-a^2b^2-b^2a^2-ab\vec{a}\vec{b}=-|\vec{a}|^2|\vec{b}|^2+|\vec{a}|^2|\vec{b}|^2=0[/mm]
>
> Nun zu meiner Frage(n):
> wie kommt das zweite - in dem Schritt
> [mm]ab\vec{a}\vec{b}-a^2b^2-b^2a^2-ab\vec{a}\vec{b}[/mm] zustande,
Das ist ein Tippfehler, der im nächsten Schritt ja wieder behoben ist ...
> und wie genau kommt man dann von
> [mm]ab\vec{a}\vec{b}-a^2b^2-b^2a^2-ab\vec{a}\vec{b}[/mm] auf
> [mm]-|\vec{a}|^2|\vec{b}|^2+|\vec{a}|^2|\vec{b}|^2=0[/mm] ?
>
> Meiner Ansicht nach, heben sich [mm]ab\vec{a}\vec{b}[/mm] und
> [mm]-ab\vec{a}\vec{b}[/mm] gegenseitig auf, sodass [mm]-a^2b^2-b^2a^2[/mm]
> übrig bleibt.
>
> Also wird [mm]-a^2b^2-b^2a^2[/mm] zu
> [mm]-|\vec{a}|^2|\vec{b}|+|\vec{a}|^2|\vec{b}|^2[/mm] umgewandelt
> und hier verstehe ich nicht wo das + herkommt
Das war ein Fehler beim Aufschrieb ...
> und wieso
> aufeinmal alles im Betrag mit Vektorpfeilen steht.
Es ist doch [mm]\vec x\cdot\vec x \ = \ |\vec x|^2[/mm]
>
> Ich hoffe, dass mir jemand helfen kann.
>
> Danke im Vorraus
Dem kleinen Wörtchen "voraus" genügt ein "r" vollkommen ...
Gruß
schachuzipus
|
|
|
|