www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Umkehrabbildung
Umkehrabbildung < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umkehrabbildung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:40 So 30.11.2008
Autor: Dash

Aufgabe
Aufgabe
Beweisen Sie, dass die durch sinh(x):= $ [mm] \bruch{1}{2} [/mm] $ * ( $ [mm] e^x [/mm] $ - e^-x ) definierte Funktion sinh: $ [mm] \IR \to \IR [/mm] $ eine stetige Umkehrabbildung arcsinh: $ [mm] \IR \to \IR [/mm] $ besitzt.

Hallo,

ich muss zu allererst von sinh(x):= $ [mm] \bruch{1}{2} [/mm] $ * ( $ [mm] e^x [/mm] $ - e^-x ) auf arcsinh(x) = ln (x + $ [mm] \wurzel{x^2 + 1} [/mm] $ ) kommen.

y = $ [mm] \bruch{1}{2} [/mm] $ * ( $ [mm] e^x [/mm] $ - e^-x )

Ich setze $ [mm] e^x [/mm] $ = z und e^2x = $ [mm] z^2 [/mm] $

y = $ [mm] \bruch{1}{2} [/mm] $ * (z - $ [mm] \bruch{1}{z}) [/mm] $
y = $ [mm] \bruch{1}{2} [/mm] $ * $ [mm] (\bruch{z^2 - 1}{z}) [/mm] $

Von dort aus komme ich nicht weiter...

        
Bezug
Umkehrabbildung: weitere Schritte
Status: (Antwort) fertig Status 
Datum: 08:15 Mo 01.12.2008
Autor: Loddar

Hallo Dash!


Multipliziere Deine Gleichung nun mit $2*z_$ , und Du erhältst eine quadratische Gleichung, die Du z.B. mit der MBp/q-Formel lösen kannst.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]