www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Elektrotechnik" - Umstellung Übertragungsfunktio
Umstellung Übertragungsfunktio < Elektrotechnik < Ingenieurwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Elektrotechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umstellung Übertragungsfunktio: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:07 So 14.09.2014
Autor: Mino1337

Aufgabe
[mm] \bruch{R_{3}}{\bruch{R_{2}*jwL_{1}}{R_{2}+jwL_{1}}+R_{3}}=(1+jw\bruch{L_{1}}{R_{2}})*\bruch{1}{1+\bruch{R_{2}+R_{3}}{R_{2}*R_{3}}L_{1}} [/mm]

Wahre Aussage !

Hallo,

Ich komme nicht dahin die Formel Links welche ich selbst Aufgestellt habe so umzustellen das sie die Formel Rechts Ergibt welche die Lösung der Uni ist.

Ich habe bereits mit Technischen Hilfsmitteln die Richtigkeit dieser Aussage überprüft weswegen ich sagen kann das sie Wahr ist.

Die Linke Formel ist eine Übertragungsfunktion einer Schaltung für ein Bode-Diagramm und die Formel Rechts soll die Normalform darstellen.

Könnte mir Bitte jemand Helfen zu verstehen wie man was Umstellen muss um dort hin zu kommen und evtl. noch ein Paar Tipps fürs Umstellen (womit ich generell kleine Probleme habe) mit auf den Weg geben ?

Vielen Dank =D

        
Bezug
Umstellung Übertragungsfunktio: Dimensionen
Status: (Antwort) fertig Status 
Datum: 10:19 So 14.09.2014
Autor: Infinit

Hallo Mino1337,
ein einfacher, erster Check bei solchen Aufgaben ist immer wieder der Vergleich der Dimensionen auf der rechten und der linken Seite des Gleichheitszeichens.
Als Übertragungsfunktion muss der gesamte Bruch, rechts wie links, insgesamt dimensionslos sein.
Auf der linken Seite haut das auch hin, im Zähler tritt ein Widerstand auf, im Nenner genauso.
Nun schauen wir uns mal die rechte Seite der angeblichen Gleichung an.
Dein Multiplikator ist dimensionslos, wie sieht es nun mit dem Multiplikanden aus? Auch er müsste dimensionslos sein. Der Zähler ist dies mit seiner 1, die 1 im Nenner ist es sicher auch, aber dann kann was nicht stimmen.
Wir brauchen die Dimensionen eines Bruches der Art L/R und da komme ich auf [kursiv geschrieben]
[mm] \bruch{Vs \cdot A}{A \cdot V} = s [/mm]
Dieser Ausdruck ist also nicht dimensionslos und somit kann die Gleichheit, die Du ja überprüft hast, nicht stimmen.
Viele Grüße,
Infinit

Bezug
        
Bezug
Umstellung Übertragungsfunktio: Antwort
Status: (Antwort) fertig Status 
Datum: 11:20 So 14.09.2014
Autor: isi1

Deine Formel, Mino,
ist ein Spannungsteiler aus R3 und (R2 || jwL1)

Üblich ist, das j nur im Zähler zu haben.

$ [mm] \bruch{R_{3}}{\bruch{R_{2}\cdot{}jwL_{1}}{R_{2}+jwL_{1}}+R_{3}}=(1+jw\bruch{L_{1}}{R_{2}})\cdot{}\bruch{1}{1+\bruch{R_{2}+R_{3}}{R_{2}\cdot{}R_{3}}L_{1}} [/mm] $

Untersten Nenner hochmultiplizieren
$ [mm] \frac{R_{3}\cdot(R_{2}+jwL_{1})}{R_{2}\cdot{}jwL_{1}+R_{3}*(R_{2}+jwL_{1})} [/mm] = $

durch R2 teilen
[mm] \frac{R_{3}\cdot(1+\frac{jwL_{1}}{R_{2}})}{jwL_{1}+R_{3}*(1+\frac{jwL_{1}}{R_{2}})} [/mm] =

durch R3 teilen
[mm] \frac{(1+\frac{jwL_{1}}{R_{2}})}{\frac{jwL_{1}}{R_3}+(1+\frac{jwL_{1}}{R_{2}})} [/mm] =

Klammer im Zähler vor den Bruchstrich
[mm] (1+\frac{jwL_{1}}{R_{2}})\cdot \frac{1}{\frac{jwL_{1}}{R_3}+(1+\frac{jwL_{1}}{R_{2}})} [/mm] =
[mm] (1+\frac{jwL_{1}}{R_{2}})\cdot \frac{1}{1+\frac{jwL_{1}}{R_3}+\frac{jwL_{1}}{R_{2}}} [/mm] =

Noch die Brüche im Nenner gleichnamig machen
[mm] (1+jw\frac{L_{1}}{R_{2}})\cdot{}\frac{1}{1+\frac{R_{2}+R_{3}}{R_{2}\cdot{}R_{3}}j\omega L_{1}} [/mm] $

Siehst schon, da fehlte das jw im Nenner, dadurch ist die Geschichte noch nicht fertig, denn wie gesagt, es sollte im Nenner kein j vorkommen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Elektrotechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]