Unabh. wtheoretische Eigensch. < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 11:27 Sa 04.10.2008 | Autor: | Dedas |
Hallo,
also erstmal der Hinweis:
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Ich habe eine Frage und zwar: Ist die Unabhängigkeit von Zufallsvariablen eine wahrscheinlichkeitstheoretische Eigenschaft, d.h. dass sie nur von der Verteilung abhängt?
Außerdem hab ich irgendwo mitbekommen, dass dies bei der gemeinsamen Verteilung von ZV eine Rolle spielt. Ich versteh aber den Zusammenhang nicht. Könnte mir das wer erklären?
Wäre super, wenn mir wer helfen könnte. Schon mal danke!
Dedas
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 11:51 Sa 04.10.2008 | Autor: | Infinit |
Hallo Dedas,
die Unabhängigkeit ist keine Eigenschaft der Verteilung, sondern des der Verteilung zugrundeliegenden Wahrscheinlichkeitsprozesses. Dieser Prozess lässt sich durch mehrere Zufallsvariablen beschreiben und diese können dann durchaus unabhängig voneinander sein. Dies zu beweisen, ist keineswegs einfach, meist geht man von solch einer Unabhängigkeit aus, da sie die Rechnung vereinfacht, wie Du ja auch schon geschrieben hast. Die Erwartungswertbildung reduziert sich auf eine Multiplikation der einzelnen Erwartungswerte. Die Dichten sind unabhängig voneinander etc.
Häufig ist diese Voraussetzung wichtig, um überhaupt analytisch etwas berechnen zu können, aber, um es noch mal klar zu sagen, diese Unabhängigkeit entsteht aus der Modellbildung des Zufallsprozesses heraus, die sich dann im Verhalten der Zufallsvariablen widerspiegelt.
Viele Grüße,
Infinit
|
|
|
|