www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Maßtheorie" - Unabhängigkeit
Unabhängigkeit < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Unabhängigkeit: Erhaltung unter stetigen Abb.
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 16:25 Sa 15.12.2012
Autor: Mousegg

Aufgabe
Sein (W,P) ein diskreter W-Raum und [mm] X_1,...,X_n [/mm]  seien unabhängige Zufallsvariablen X:W [mm] \to E_i. [/mm] Weiter seien [mm] f_i [/mm] beliebige stetige Funtkionen mit [mm] f_i:E_i \to D_i. [/mm]  Dann sind die Zufallsvariablen [mm] f_i(X_i) [/mm] unabhängig.

Hallo,
ich verstehen nicht wieso obrige Aussage gilt. Ich habe vorerste versucht das ganze für nur 2 ZV zu zeigen [mm] X_1 [/mm] und [mm] X_2. [/mm]

Zu zeigen wäre [mm] P(X_1 \cap X_2)=P(X_1)*P(X_2) \Rightarrow P(f_1(X_1)\cap f_2(X_2))=P(f_1(X_1))*P(f_2(X_2)). [/mm]

Ich sehe leider weder einen Zusammenhang zwischen [mm] X_1 \cap X_2 [/mm] und [mm] f_1(X_1) \cap f_2(X_2) [/mm] noch zwischen [mm] P(X_1 \cap X_2) [/mm] und [mm] P(f_1(X_1) \cap f_2(X_2)). [/mm] Vielleicht hat ja jeamand eine Idee oder einen Tipp.

vielen Dank und viele Grüße

        
Bezug
Unabhängigkeit: siehe hier
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:58 So 16.12.2012
Autor: Infinit

Die Aufgabe taucht doppelt auf,
hier geht es zum aktuellen Thread.
VG,
Infinit

Bezug
                
Bezug
Unabhängigkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:16 So 16.12.2012
Autor: Mousegg

Danke infinit tut mir leid wenn ich für Unordnung gesorgt habe

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]