Unabhängigkeit v. Ereignissen < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Gegeben seien ein Wahrscheinlichkeitsraum und Ereignisse A, B.
Zeigen Sie: Wenn A und B unabhängig sind, dann sind auch
(a) die Ereignisse [mm] A^{c} [/mm] und B unabhängig.
(b) die Ereignisse [mm] A^{c} [/mm] und [mm] B^{c} [/mm] unabhängig. |
Hallo!
Ich habe zu dieser Aufgabe folgende Lösung:
(a) [mm] P(A^{c}|B)=\bruch{P(A^{c} \cap B)}{P(B)}=\bruch{P(A^{c})*P(B)}{P(B)}=P(A^{c})
[/mm]
[mm] (b)P(A^{c}|B^{c})= [/mm] wie (a) = [mm] P(A^{c})
[/mm]
Und unter jedem Aufgabenteil den Satz, dass aus der Unabhängigkeitsdefinition aus der Forlesung die Unabhängigkeit der jeweiligen Ereignisse folgt.
Stimmt das oder muss ich das irgendwie anders machen?
Danke schonmal!
Lg, Jenny
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 12:59 Mo 26.11.2007 | Autor: | luis52 |
Moin Jenny,
ich muss dich enttaeuschen, deine Loesung ist nicht korrekt, denn du
hast ja die Voraussetzung nicht ausgenutzt, dass $A$ und $B$
unabhaengig sind. Ausserdem musst du beispielsweise zeigen, dass gilt
[mm] $P(A^{c}\cap B)=P(A^{c})P(B)$. [/mm] Dein Ansatz funktioniert nur,
wenn gilt $P(B)>0$, was nicht allgemein genug ist.
Versuche mal eine Wahrscheinlichkeitstabelle zu erstellen:
https://matheraum.de/read?t=312174
Dann ist die Loesung ein Klacks. Bedenke, dass du in der Zelle mit
[mm] $P(A\cap [/mm] B)$ das Produkt $pq$ schreiben darfst mit $p=P(A)$ und
$q=P(B)$. Was folgt dann fuer den Rest?
lg Luis
|
|
|
|