www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Unbestimmtes Integral
Unbestimmtes Integral < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Unbestimmtes Integral: Frage
Status: (Frage) beantwortet Status 
Datum: 19:23 So 10.04.2005
Autor: havoide

Hallo alle miteinander!

Ich hätte da eine Frage!

Ich soll  [mm] \integral_{a}^{b} [/mm] { [mm] \wurzel{tan(x)} [/mm] dx} berechnen!

Ich komm aber nicht allzu weit. Wie substituiert man hier am besten?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Lg Alex

        
Bezug
Unbestimmtes Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 09:02 Mo 11.04.2005
Autor: Paulus

Hallo havoide

[willkommenmr]

Nun, der Begriff "Unbestimmtes Integral" bezieht sich nicht auf Integrale, die du nicht bestimmen kannst! ;-)

>  
> Ich soll  [mm]\integral_{a}^{b}\wurzel{tan(x)}\, dx[/mm]
> berechnen!
>
> Ich komm aber nicht allzu weit. Wie substituiert man hier
> am besten?
>  

Ich würde einfach versuchen, mutig die ganze unbequeme Funktion wegzusubstituieren. In der Regel vereinfacht sich dadurch einiges, und evtl. muss man dann im Laufe der Lösung noch weitere Substitutionen vornehmen.

Also einfach mal:

$u := [mm] \wurzel{\tan x}$ [/mm]

Dann wird

[mm] $\bruch{du}{dx}=\bruch{1}{\cos^2x}*\bruch{1}{2\wurzel{\tan x}}=\bruch{1}{\cos^2x}*\bruch{1}{2u}$ [/mm] (Innere Ableitung mal äussere Ableitung)

Oder eben:

$dx = 2u [mm] \cos^2x\, [/mm] du$

Jetzt müssten wir nur noch das [mm] $\cos^2x$ [/mm] durch $u_$ ausdrücken.

Es gilt aber:

$u = [mm] \wurzel{\tan x}$ [/mm] (unsere Substitution)

Damit:

[mm] $u^2 [/mm] := [mm] \tan [/mm] x$
[mm] $u^4 [/mm] := [mm] \tan^2x=\bruch{\sin^2x}{\cos^2x}=\bruch{1-\cos^2x}{\cos^2x}$ [/mm]

Das solltest du noch ohne Schwierigkeiten nach [mm] $\cos^2x$ [/mm] auflösen können.

Dann noch alles oben eingesetzt, und das Integral ist gar nicht mehr ein "unbestimmtes Integral" ;-)

Mit lieben Grüssen

Paul

Bezug
                
Bezug
Unbestimmtes Integral: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:41 Mo 11.04.2005
Autor: havoide

Danke vielmals!

Wenn mans den Weg gesehen hat, schauts eigentlich wirklich einfach aus.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]