Uneigentliches Integral < Analysis < Hochschule < Mathe < Vorhilfe
|
|
Status: |
(Antwort) fertig | Datum: | 00:16 Do 28.04.2005 | Autor: | Max |
Hallo Maiko,
erstmal zur Erläuterung warum dieses Integral doch existieren kann, obwohl man über eine Polstelle hinwegintegriert. Das Integral ist ja eine Bilanzsumme, d.h. positive Funktionswerte gehen positiv ein und negative Funktionswerte gehen negativ ein. ZB ist der Wert des Integrals [mm] $\int_{-1}^1 [/mm] x dx =0$, da [mm] $-\int_{-1}^0 [/mm] x dx = [mm] \int_0^1 [/mm] x dx$.
Eine ähnliche Situation leigt auch bei deinem Integral vor. Die Integrandenfunktion [mm] $g(x)=\frac{1}{x-2}$ [/mm] ist punktsymmetrisch zu $(2|0)$. Die Funktion hat eine Polstelle mit Vorzeichenwechsel bei $x=2$.
Du wirst noch sehen, dass dies dazu führt, dass sich die uneigentlichen Integrale [mm] $\int_1^2 [/mm] g(x)dx$ und [mm] $\int_2^3 [/mm] g(x)dx$ gegenseitig aufheben - allerings existiert keins der beiden Integrale alleine!
Ich würde im Gegensatz zu deiner Lösung nur statt [mm] $\epsilon_1$ [/mm] und [mm] $\epsilon_2$ [/mm] nur [mm] $\epsilon$ [/mm] wählen, um das uneigentliche Integral zu bestimmen.
Wegen [mm] $\int [/mm] g(x) dx = [mm] \log\left(|x-2|\right)$ [/mm] gilt ja:
[mm] $\int_0^3 [/mm] g(x) dx = [mm] \lim_{\epsilon \to 0} \left( \int_0^1 g(x) dx+ \int_1^{2-\epsilon} g(x) dx +\int_{2+\epsilon}^3g(x) dx \right) [/mm] = [mm] \lim_{\epsilon \to 0} \left( \log(|1-2|)-\log(|2-0|)+\log(|2-(2-\epsilon)|)-\log(1)+\log(|3-2|)-\log(|2-(2+\epsilon)|)\right) [/mm] = [mm] \lim_{\epsilon \to 0} \left( \log(1)-\log(2)+\log(\epsilon)-\log(1)+\log(1)-\log(\epsilon)\right)=\lim_{\epsilon \to 0} \left( -\log(2)\right) [/mm] = [mm] -\log(2)$
[/mm]
Damit existiert das uneigentliche Integral und hat den Wert [mm] $-\log(2)$.
[/mm]
Bei der zweiten Aufgabe kann ich mir das ganze nur so erklären, dass im vorderen Arcustangens auch ein [mm] $\frac{1}{\sqrt{3}}$ [/mm] steht, wie ist denn dort die Aufgabe?
Gruß Max
|
|
|
|