www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Uneigentliches Integral
Uneigentliches Integral < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Uneigentliches Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:20 Fr 28.12.2012
Autor: Chris993

Aufgabe
Existiert das uneigentliche Integral:
[mm] \integral_{0}^{\infty}{e^{-ax} dx} [/mm] a>0

Hi,
Also was mich soweit erstmal stört ist das zusätzliche a.

Nunja ich habe mal so angefangen:

[mm] \limes_{b\rightarrow\infty} \bruch{1}{-a}*e^{-\infty}-\bruch{1}{-a}| [/mm]

und genau hier hört es auf. Also den hinteren Teil:
konnte ich ja durch einsetzen der 0 für x weitgehenst vereinfachen aber jetzt hört es hier auf.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Bitte um Hilfe.

Danke
Lg
Chris

        
Bezug
Uneigentliches Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 20:36 Fr 28.12.2012
Autor: MathePower

Hallo Chris993,

> Existiert das uneigentliche Integral:
>  [mm]\integral_{0}^{\infty}{e^{-ax} dx}[/mm] a>0
>  Hi,
>  Also was mich soweit erstmal stört ist das zusätzliche
> a.
>  
> Nunja ich habe mal so angefangen:
>  
> [mm]\limes_{b\rightarrow\infty} \bruch{1}{-a}*e^{-\infty}-\bruch{1}{-a}|[/mm]
>  


Hier muss es doch zunächst so lauten:

[mm]\limes_{b\rightarrow\infty} \bruch{1}{-a}*e^{-\blue{a*b}}-\bruch{1}{-a}|[/mm]

Bilde nun den Grenzwert für [mm]b \rightarrow \infty[/mm] unter der Voraussetzung a>0.


> und genau hier hört es auf. Also den hinteren Teil:
>  konnte ich ja durch einsetzen der 0 für x weitgehenst
> vereinfachen aber jetzt hört es hier auf.
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  Bitte um Hilfe.
>  
> Danke
>  Lg
>  Chris


Gruss
MathePower

Bezug
                
Bezug
Uneigentliches Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:42 Fr 28.12.2012
Autor: Chris993

ok das hatte ich direk übersprungen da ich doch jetzt [mm] \infty [/mm] für b einsetze...
damit bleibt der Ausdruck: [mm] \limes_{b\rightarrow \infty} \bruch{1}{-a}*\infty \bruch{1}{-a} [/mm]

bzw. [mm] \limes_{b\rightarrow \infty} \bruch{1}{a}*\infty [/mm]


Bezug
                        
Bezug
Uneigentliches Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 21:00 Fr 28.12.2012
Autor: Richie1401

Hallo Chris,

> ok das hatte ich direk übersprungen da ich doch jetzt
> [mm]\infty[/mm] für b einsetze...
>  damit bleibt der Ausdruck: [mm]\limes_{b\rightarrow \infty} \bruch{1}{-a}*\infty \bruch{1}{-a}[/mm]
>  
> bzw. [mm]\limes_{b\rightarrow \infty} \bruch{1}{a}*\infty[/mm]
>  

Das ganze ist einfach äußerst unsauber aufgeschrieben. Das ganze schmerzt ja wahsinnig.

Also noch einmal

[mm] \int_{0}^{\infty}{e^{-ax} dx}=\left[\frac{1}{-a}e^{-ax}\right]^{\infty}_{0} [/mm]

[mm] =\left(\lim\limits_{x\to\infty}\frac{1}{-a}e^{-ax}\right)-\frac{1}{-a}e^{-a*0} [/mm]

[mm] =0+\frac{1}{a} [/mm]

[mm] \underline{=\frac{1}{a}} [/mm]

Das Integral existiert also.

Bezug
                        
Bezug
Uneigentliches Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 21:55 Fr 28.12.2012
Autor: reverend

Hallo Chris,

> ok das hatte ich direk übersprungen da ich doch jetzt
> [mm]\infty[/mm] für b einsetze...

Soso. Du kannst also mit dem Unendlichen rechnen?

>  damit bleibt der Ausdruck: [mm]\limes_{b\rightarrow \infty} \bruch{1}{-a}*\infty \bruch{1}{-a}[/mm]

Da ist Richie gnädig. Das ist nicht unsauber, sondern Schwachsinn.
Oder in der Sprache der Mathematiker: falsch.

> bzw. [mm]\limes_{b\rightarrow \infty} \bruch{1}{a}*\infty[/mm]

Der Schwachsinn wird größer. Vielleicht lassen wir auch noch [mm] n\to{-}\infty [/mm] laufen?
Dieser Grenzwert ist für a<0 gerade [mm] -\infty, [/mm] für a>0 ist er [mm] +\infty, [/mm] und für a=0 ist er nicht definiert.

Grüße
reverend


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]