Ungleichung < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) überfällig | Datum: | 16:27 Sa 19.05.2012 | Autor: | eps |
Aufgabe | zu zeigen: für r<0<s gilt
[mm] (\bruch{1}{n} \summe_{j=1}^n (\bruch{1}{j} \summe_{i=1}^j x_i^r)^{\bruch{s}{r}})^{\bruch{1}{s}}\le (\bruch{1}{n} \summe_{j=1}^n (\bruch{1}{j} \summe_{i=1}^j x_i^s)^{\bruch{r}{s}})^{\bruch{1}{r}} [/mm] |
ich weiss folgendes:
Der Fall r=0, s>0:
[mm] (\bruch{1}{n}\summe_{j=1}^n(\produkt_{i=1}^j x_i^{\bruch{1}{j}})^s)^{\bruch{1}{s}}\le(\produkt_{j=1}^n(\bruch{1}{j}\summe_{i=1}^jx_i^s)^{\bruch{1}{s}})^{\bruch{1}{n}}
[/mm]
Der Fall s=0, r<0:
[mm] (\bruch{1}{n}\summe_{j=1}^n(\produkt_{i=1}^j x_i^{\bruch{1}{j}})^r)^{\bruch{1}{r}}\ge(\produkt_{j=1}^n(\bruch{1}{j}\summe_{i=1}^jx_i^r)^{\bruch{1}{r}})^{\bruch{1}{n}}
[/mm]
ausserdem gilt für r<s:
[mm] (\bruch{1}{n} \summe_{j=1}^n x_i^r)^{\bruch{1}{r}}\le (\bruch{1}{n} \summe_{j=1}^n x_i^s)^{\bruch{1}{s}}
[/mm]
und für r<0<s:
[mm] (\bruch{1}{n} \summe_{j=1}^n x_i^r)^{\bruch{1}{r}}\le \produkt x_i^{\bruch{1}{n}} \le (\bruch{1}{n} \summe_{j=1}^n x_i^s)^{\bruch{1}{s}}
[/mm]
ich komm leider nicht weiter und wäre sehr dankbar für hilfe!!!
|
|
|
|
Status: |
(Frage) überfällig | Datum: | 17:34 So 20.05.2012 | Autor: | eps |
ich kann beweisen, dass folgendes gilt:
[mm] (\bruch{1}{n}\summe(\bruch{1}{j}\summe x_i^r)^{-\bruch{s}{r}})^{\bruch{1}{s}}\ge (\bruch{1}{n}\summe(\bruch{1}{j}\summe x_i^s)^{-\bruch{r}{s}})^{\bruch{1}{r}}
[/mm]
aber folgt daraus denn
[mm] (\bruch{1}{n}\summe(\bruch{1}{j}\summe x_i^r)^{\bruch{s}{r}})^{\bruch{1}{s}})\le (\bruch{1}{n}\summe(\bruch{1}{j}\summe x_i^s)^{\bruch{r}{s}})^{\bruch{1}{r}}) [/mm] ???
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 18:07 So 20.05.2012 | Autor: | eps |
nein, das scheint nicht zu folgen... aber kann mir jemand vielleicht weiterhelfen? ich komm einfach nicht drauf...
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 18:20 Sa 26.05.2012 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 17:20 Di 22.05.2012 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|