www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionalanalysis" - Ungleichung, Betrag
Ungleichung, Betrag < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ungleichung, Betrag: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:07 Mo 08.12.2008
Autor: Zorba

Aufgabe
[mm] |\integral_{\omega}{k(x,y)f(y) dy}|^{p} \le [/mm] oder [mm] \ge [/mm] ?

Kann ich den Betrag (hoch p) irgendwie in das Integral ziehen?

        
Bezug
Ungleichung, Betrag: Antwort
Status: (Antwort) fertig Status 
Datum: 22:16 Mo 08.12.2008
Autor: leduart

Hallo
Nein, es sei denn als Ungleichung.
Gruss leduart

Bezug
                
Bezug
Ungleichung, Betrag: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:21 Mo 08.12.2008
Autor: Zorba

Ja das meinte ich eig! Wie könnte ich dieses Integral denn abschätzen?

Bezug
                        
Bezug
Ungleichung, Betrag: Antwort
Status: (Antwort) fertig Status 
Datum: 22:31 Mo 08.12.2008
Autor: leduart

Hallo
das Integral ist doch ne Summe, also kannst du wie mit ner Summe umgehen, d,h. wenn du den Betrag reinziehst, wird der Ausdruck größer. das hoch p allerdings kann man nicht reinziehen.
Gruss leduart

Bezug
                                
Bezug
Ungleichung, Betrag: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:40 Mo 08.12.2008
Autor: Zorba

Vielen Dank!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]