www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - Unterräume für Vektorraum Mod3
Unterräume für Vektorraum Mod3 < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Unterräume für Vektorraum Mod3: Verständnisfrage
Status: (Frage) beantwortet Status 
Datum: 23:50 Di 06.01.2015
Autor: CarstenF

Aufgabe
Gegeben Vektorraum [mm] V=K^3 [/mm] über den Körper K=Z3={0,1,2} mit den Verknüpfungen +mod3 und *mod3 (Modulo 3, d.h. 2 + 2 = 1 etc.).

Aufgabe: Geben Sie alle Untervektorräume von [mm] K^3 [/mm] an, die [mm] {1,0,1}^T [/mm] Element von [mm] K^3 [/mm] enthalten.

Hallo,

meine erste Frage hier im Forum.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Als eine der wöchentlichen Aufgaben muss ich die obige Frage beantworten:

Meine vorläufige Lösung wäre:
1. V selbst
2. [mm] U:={(x1,x2,x3)\in von K^3|x2=0} [/mm]
3. [mm] U:={(x1,x2,x3)\in von K^3|x1=x3} [/mm]
4. [mm] U:={(x1,x2,x3)\in von K^3|x2=0,x1=x3} [/mm]
5. [mm] U:={(x1,x2,x3)\in von K^3|x1+x2-x3=0} [/mm]
6. [mm] U:={(x1,x2,x3)\in von K^3|x3+x2-x1=0} [/mm]

Jetzt wäre meine Frage:
Darf ein Unterraum eigentlich auch eine eingeschränkte Version der Verknüpfungen von V verwenden (und ist dann noch Unterraum von V)? D.h. wäre ein Unterraum mit Verknüpfungen + und * mit modulo 2 auch ein Unterraum von V?
Und wahrscheinlich gibt es noch deutlich mehr Unterräume als ich aufgeschrieben habe? Wäre für einen Tipp in welche Richtung ich noch denken sollte dankbar!

Viele Grüße,
Carsten

        
Bezug
Unterräume für Vektorraum Mod3: Antwort
Status: (Antwort) fertig Status 
Datum: 11:26 Mi 07.01.2015
Autor: hippias

[willkommenmr]
> Gegeben Vektorraum [mm]V=K^3[/mm] über den Körper K=Z3={0,1,2} mit
> den Verknüpfungen +mod3 und *mod3 (Modulo 3, d.h. 2 + 2 =
> 1 etc.).
>  
> Aufgabe: Geben Sie alle Untervektorräume von [mm]K^3[/mm] an, die
> [mm]{1,0,1}^T[/mm] Element von [mm]K^3[/mm] enthalten.
>  Hallo,
>  
> meine erste Frage hier im Forum.
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Als eine der wöchentlichen Aufgaben muss ich die obige
> Frage beantworten:
>  
> Meine vorläufige Lösung wäre:
>  1. V selbst
>  2. [mm]U:={(x1,x2,x3)\in von K^3|x2=0}[/mm]
>  3. [mm]U:={(x1,x2,x3)\in von K^3|x1=x3}[/mm]
>  
> 4. [mm]U:={(x1,x2,x3)\in von K^3|x2=0,x1=x3}[/mm]
>  5.
> [mm]U:={(x1,x2,x3)\in von K^3|x1+x2-x3=0}[/mm]
>  6. [mm]U:={(x1,x2,x3)\in von K^3|x3+x2-x1=0}[/mm]
>  
> Jetzt wäre meine Frage:
> Darf ein Unterraum eigentlich auch eine eingeschränkte
> Version der Verknüpfungen von V verwenden (und ist dann
> noch Unterraum von V)? D.h. wäre ein Unterraum mit
> Verknüpfungen + und * mit modulo 2 auch ein Unterraum von
> V?

Nein, ueblicherweise erbt eine Teilstruktur die Verknuepfung der Oberstruktur. Das, was Du vorschlaegst, wuerde man uebrigens nicht als Einschraenkung bezeichnen. Vielmehr versteht man unter einer Einschraenkung naemlich das, was man erhaelt, wenn die alte Verknuepfung auch fuer die Teilstruktur verwendet wird.

Natuerlich kannst Du Deinen eigenen Begriff "Teilraum" definieren und auch versuchen die Verknuepfung zwischen den Vektoren o.ae. zu aendern, nur wuerde das nicht laenger als Teilraum im ueblichen Sinne angesehen werden.

Du kannst ja mal versuchen herauszufinden was man erhaelt, wenn Du ploetzlich Modulo $2$ zu rechnen versuchst...

>  Und wahrscheinlich gibt es noch deutlich mehr Unterräume
> als ich aufgeschrieben habe? Wäre für einen Tipp in
> welche Richtung ich noch denken sollte dankbar!

Das sieht schon gut aus (obwohl ich nicht darueber nachgedacht habe, ob Du einen Teilraum vergessen hast). Wenn der Begriff der Dimension schon eingefuehrt wurde, dann koenntest Du die Teilraeume auch systematisch geordnet nach ihrer Dimension aufzaehlen.

Auch sollstest Du Dir darueber Gedanken machen, wie Du beweisen kannst, dass Du wirklich alle Raeume gefunden hast.

>  
> Viele Grüße,
>  Carsten


Bezug
                
Bezug
Unterräume für Vektorraum Mod3: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:33 Mi 07.01.2015
Autor: CarstenF

Danke! Ja, Dimension wurde schon eingeführt. über Deinen letzten Satz muss ich nachdenken...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]