Untervektorraum über Z/Zp < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Sei $V$ ein $K$-Vektorraum und $U$ eine Untergruppe von $(V , +)$. Zeigen Sie: Ist $K = [mm] \IF_{p}$ [/mm] mit p prim, dann ist $U$ ein $K$-Vektorraum mit der auf $U$ eingeschränkten Addition und skalaren Multiplikation von $V$. |
Hallo!
Ich komme an einer Stelle im Beweis nicht weiter. Ich möchte zeigen, dass U ein Untervektorraum von V ist, dazu muss ich zeigen:
- U ist nicht leer: Klar, weil $(U,+)$ Untergruppe von $(V,+)$ ist und als solche mindestens das neutrale Element von V bzgl. "+" enthält.
- Für alle [mm] $a,b\in [/mm] U$ gilt: $a+b [mm] \in [/mm] U$. Hier habe ich mich gefragt, ob ich überhaupt etwas zeigen muss? Ich habe ja schon gegeben, dass $(U,+)$ eine Untergruppe ist, also ist es auch eine Gruppe und somit abgeschlossen bzgl. "+" ?
- Für $a [mm] \in [/mm] U$, [mm] $\lambda\in [/mm] K = [mm] \IF_{p} :=\IZ/ {\IZ p}$ [/mm] gilt: [mm] $\lambda*a \in [/mm] U$. Ich habe mir überlegt, dass ich [mm] \lambda [/mm] als Summe von Einsen (also Einselementen von $K$) schreiben könnte.
Dann könnte ich die Distributivgesetze anwenden (in V), und noch die Regel $1*v = v$ für [mm] $v\in [/mm] V$, also:
[mm] \lambda*a [/mm] = (1 + ... + 1)*a = 1*a + ... + 1*a = a + ... + a [mm] \in [/mm] U.
>>>Nun meine erste Frage: Darf ich das überhaupt? Also darf ich die Rechenregeln aus V für meinen Ausdruck [mm] $\lambda*a$ [/mm] benutzen?
Wenn dem so wäre, müsste ich ja nur noch begründen, warum sich [mm] \lambda [/mm] als Summe von Einsen schreiben lässt (oder ist das klar, weil in [mm] $\IZ [/mm] / [mm] \IZ [/mm] p$ ohnehin gilt: [mm] \underbrace{1 + ... +1}_{\lambda - mal} [/mm] = [mm] \lambda [/mm] ?)
Danke für Eure Hilfe,
Grüße,
Stefan
|
|
|
|
> Sei [mm]V[/mm] ein [mm]K[/mm]-Vektorraum und [mm]U[/mm] eine Untergruppe von [mm](V , +)[/mm].
> Zeigen Sie: Ist [mm]K = \IF_{p}[/mm] mit p prim, dann ist [mm]U[/mm] ein
> [mm]K[/mm]-Vektorraum mit der auf [mm]U[/mm] eingeschränkten Addition und
> skalaren Multiplikation von [mm]V[/mm].
> Hallo!
>
> Ich komme an einer Stelle im Beweis nicht weiter. Ich
> möchte zeigen, dass U ein Untervektorraum von V ist, dazu
> muss ich zeigen:
>
> - U ist nicht leer: Klar, weil [mm](U,+)[/mm] Untergruppe von [mm](V,+)[/mm]
> ist und als solche mindestens das neutrale Element von V
> bzgl. "+" enthält.
>
> - Für alle [mm]a,b\in U[/mm] gilt: [mm]a+b \in U[/mm]. Hier habe ich mich
> gefragt, ob ich überhaupt etwas zeigen muss? Ich habe ja
> schon gegeben, dass [mm](U,+)[/mm] eine Untergruppe ist, also ist es
> auch eine Gruppe und somit abgeschlossen bzgl. "+" ?
Hallo,
ja, das ergibt sich aus der Voraussetzung.
>
> - Für [mm]a \in U[/mm], [mm]\lambda\in K = \IF_{p} :=\IZ/ {\IZ p}[/mm] gilt:
> [mm]\lambda*a \in U[/mm]. Ich habe mir überlegt, dass ich [mm]\lambda[/mm]
> als Summe von Einsen (also Einselementen von [mm]K[/mm]) schreiben
> könnte.
Genau. [mm] \IF_{p} [/mm] ist isomorph zu [mm] \IZ/ {\IZ p}, [/mm] daher kann man jedes Element als Summe von Einselementen schreiben.
>
> Dann könnte ich die Distributivgesetze anwenden (in V),
> und noch die Regel [mm]1*v = v[/mm] für [mm]v\in V[/mm], also:
>
> [mm]\lambda*a[/mm] = (1 + ... + 1)*a = 1*a + ... + 1*a = a + ... + a
> [mm]\in[/mm] U.
>
> >>>Nun meine erste Frage: Darf ich das überhaupt? Also
> darf ich die Rechenregeln aus V für meinen Ausdruck
> [mm]\lambda*a[/mm] benutzen?
Ja, die gehören ja zu Deinen Voraussetzungen und gelten in der Teilmenge U von V immer noch.
Gruß v. Angela
|
|
|
|
|
Aufgabe | Sei $V$ ein [mm] $\IQ$-Vektorraum [/mm] und $U$ eine Untergruppe von $(V , +)$. Gilt nun auch: Dann ist $U$ ein [mm] $\IQ$-Vektorraum [/mm] mit der auf U eingeschränkten Addition und skalaren Multiplikation
von $V$ ? |
Hallo!
Danke, Angela, für deine Hilfe und Korrektur!
Ich habe nun noch eine zweite Aufgabe, die eigentlich genau so lautet wie die erste, nur ist der Körper [mm] \IQ.
[/mm]
Ich habe erst einmal festgestellt, dass dann zumindest der Beweis nicht mehr so funktioniert wie vorher, weil ich ja [mm] \frac{2}{3} [/mm] nicht als Summe von Einselementen darstellen kann...
Also vermutete ich, dass es nicht stimmt. Mir ist aber völlig unklar, wie ich ein Gegenbeispiel konstruieren könnte, darf ich zum Beispiel $U = [mm] (\IZ,+)$ [/mm] setzen, wenn $V = [mm] (\IQ,+)$ [/mm] ist? Dann wäre U eine Untergruppe von $V$. Aber es ist doch [mm] $\IZ$ [/mm] kein [mm] $\IQ$-Vektorraum, [/mm] oder?
Ich kann ja schreiben: Wähle [mm] $\lambda [/mm] = [mm] \frac{1}{2}\in\IQ$, [/mm] $a = [mm] 3\in\IZ$, [/mm] dann ist [mm] $\lambda*a [/mm] = [mm] \frac{3}{2}\notin \IZ$.
[/mm]
Geht das so, oder habe ich einen Denkfehler?
Vielen Dank für Eure Hilfe,
Stefan
|
|
|
|
|
> Sei [mm]V[/mm] ein [mm]\IQ[/mm]-Vektorraum und [mm]U[/mm] eine Untergruppe von [mm](V , +)[/mm].
> Gilt nun auch: Dann ist [mm]U[/mm] ein [mm]\IQ[/mm]-Vektorraum mit der auf U
> eingeschränkten Addition und skalaren Multiplikation
> von [mm]V[/mm] ?
> Hallo!
>
> Danke, Angela, für deine Hilfe und Korrektur!
>
> Ich habe nun noch eine zweite Aufgabe, die eigentlich genau
> so lautet wie die erste, nur ist der Körper [mm]\IQ.[/mm]
>
> Ich habe erst einmal festgestellt, dass dann zumindest der
> Beweis nicht mehr so funktioniert wie vorher, weil ich ja
> [mm]\frac{2}{3}[/mm] nicht als Summe von Einselementen darstellen
> kann...
>
> Also vermutete ich, dass es nicht stimmt. Mir ist aber
> völlig unklar, wie ich ein Gegenbeispiel konstruieren
> könnte, darf ich zum Beispiel [mm]U = (\IZ,+)[/mm] setzen,
Hallo,
das ist doch eine gute Idee.
[mm] V:=(\IQ, [/mm] +, *) ist ein [mm] \IQ-Vektorraum.
[/mm]
[mm] (\IZ,+) [/mm] ist eine Untergruppe von [mm] (\IQ, [/mm] +), und aus den Gründen, die Du schreibst, kein Vektorraum über [mm] \IQ.
[/mm]
Gruß v. Angela
|
|
|
|
|
Hallo Angela,
> das ist doch eine gute Idee.
>
> [mm]V:=(\IQ,[/mm] +, *) ist ein [mm]\IQ-Vektorraum.[/mm]
>
> [mm](\IZ,+)[/mm] ist eine Untergruppe von [mm](\IQ,[/mm] +), und aus den
> Gründen, die Du schreibst, kein Vektorraum über [mm]\IQ.[/mm]
Oh - hätte nicht gedacht, das ich richtig liege
Danke für die Hilfe!
Grüße,
Stefan
|
|
|
|