Unzerlegbarkeitsbeweis < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 20:25 Fr 01.05.2009 | Autor: | axi0m |
Aufgabe | Es sei K ein Körper, V ein endlich erzeugter K-Vektorraum und [mm]f(x) \in Hom_K(V,V)[/mm]. Bezüglich einer geeigneten Basis von V besitzt die darstellende Matrix [mm]A_f[/mm] von f folgende Gestalt
[mm]\pmat{ \lambda & 1 & & 0 \\ & \ddots & \ddots&\\ & & \ddots & 1\\ 0 & & & \lambda }[/mm] mit einem Element [mm]\lambda \in K[/mm]. Zeigen sie, dass V f-unzerlegbar ist.
Hinweis: Eine f-invariante Zerlegung von V führt zu einer Zerlegung von [mm]\chi_f[/mm]. Verwenden Sie, dass [mm](f-\lambda \cdot id_V)^n \neq 0[/mm] für jede natürliche Zahl [mm]n < dim(V)[/mm] |
Ich habe mir dazu folgende Gedanken gemacht:
Annahme es gibt eine Zerlegung: Also gibt es [mm]U_1,U_2[/mm] mit [mm]f(U_i)\in U_i[/mm] für [mm]i \in \lbrace 1,2\rbrace[/mm]. Dann folgt für das charakteristische Polynom gegeben durch [mm]\chi_f=(-1)^n(T-\lambda)^n[/mm] (mit [mm]n=dim V[/mm]), dass [mm]\chi_f=\chi_{f|U_i}\cdot \chi_{f|U_2}[/mm], da aber [mm](f- \lambda \cdot id_V)^n \neq 0[/mm] für [mm]n < dim V[/mm] gilt [mm]\chi_f=\mu_f[/mm] und somit besitzt das charakteristische Polynom keinen Teiler, ergo ist [mm]\chi_f=\chi_{f|U_i}\cdot \chi_{f|U_2}[/mm] ein Widerspruch.
Ist das denn von der Überlegung soweit korrekt oder hab ich mich da arg verrannt?
Falls ich da in die richtige Kerbe schlage, wie gehe ich denn weiter vor bei der Folgerung zur Unzerlegbarkeit?
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 07:19 Sa 02.05.2009 | Autor: | felixf |
Hallo!
> Es sei K ein Körper, V ein endlich erzeugter K-Vektorraum
> und [mm]f(x) \in Hom_K(V,V)[/mm]. Bezüglich einer geeigneten Basis
> von V besitzt die darstellende Matrix [mm]A_f[/mm] von f folgende
> Gestalt
> [mm]\pmat{ \lambda & 1 & & 0 \\ & \ddots & \ddots&\\ & & \ddots & 1\\ 0 & & & \lambda }[/mm]
> mit einem Element [mm]\lambda \in K[/mm]. Zeigen sie, dass V
> f-unzerlegbar ist.
>
> Hinweis: Eine f-invariante Zerlegung von V führt zu einer
> Zerlegung von [mm]\chi_f[/mm]. Verwenden Sie, dass [mm](f-\lambda \cdot id_V)^n \neq 0[/mm]
> für jede natürliche Zahl [mm]n < dim(V)[/mm]
>
> Ich habe mir dazu
> folgende Gedanken gemacht:
> Annahme es gibt eine Zerlegung: Also gibt es [mm]U_1,U_2[/mm] mit
> [mm]f(U_i)\in U_i[/mm] für [mm]i \in \lbrace 1,2\rbrace[/mm].
Du meinst [mm] $f(U_i) \subseteq U_i$. [/mm] Und es soll offenbar [mm] $U_1 \oplus U_2 [/mm] = V$ und [mm] $\dim U_1, \dim U_2 [/mm] > 0$ gelten.
> Dann folgt für
> das charakteristische Polynom gegeben durch
> [mm]\chi_f=(-1)^n(T-\lambda)^n[/mm] (mit [mm]n=dim V[/mm]), dass
> [mm]\chi_f=\chi_{f|U_i}\cdot \chi_{f|U_2}[/mm],
Das erste [mm] $U_i$ [/mm] soll [mm] $U_1$ [/mm] sein oder?
Genau, womit [mm] $\chi_{f|U_i}$ [/mm] jeweils Potenzen von $T - [mm] \lambda$ [/mm] sind (bis auf's Vorzeichen).
> da aber [mm](f- \lambda \cdot id_V)^n \neq 0[/mm]
> für [mm]n < dim V[/mm] gilt [mm]\chi_f=\mu_f[/mm] und somit besitzt das
> charakteristische Polynom keinen Teiler,
Vorsicht! Das charakteristische Polynom besitzt sehr wohl Teiler, etwa $(T - [mm] \lambda)^i$ [/mm] mit $1 [mm] \le [/mm] i < n$.
> ergo ist
> [mm]\chi_f=\chi_{f|U_i}\cdot \chi_{f|U_2}[/mm] ein Widerspruch.
Nein, das ist kein Widerspruch. Du musst genauer argumentieren hier!
Das Minimalpolynom von [mm] $\chi_f$ [/mm] ist offenbar der kgV der Minimalpolynome von [mm] $f|_{U_1}$ [/mm] und [mm] $f|_{U_2}$. [/mm] Diese sind jeweils Teiler vom charakteristischem Polynom, welches [mm] $\pm [/mm] (T - [mm] \lambda)^i$ [/mm] mit $i < n$ ist. Insbesondere ist der kgV ebenfalls von der Form $(T - [mm] \lambda)^i$ [/mm] mit $i < n$. Aber dann muss $(f - [mm] \lambda \mathrm{id}_V)^i [/mm] = 0$ gelten, was ein Widerspruch zur Voraussetzung ist.
LG Felix
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 15:30 Sa 02.05.2009 | Autor: | axi0m |
Danke soweit schonmal,
> Hallo!
>
> > Es sei K ein Körper, V ein endlich erzeugter K-Vektorraum
> > und [mm]f(x) \in Hom_K(V,V)[/mm]. Bezüglich einer geeigneten Basis
> > von V besitzt die darstellende Matrix [mm]A_f[/mm] von f folgende
> > Gestalt
> > [mm]\pmat{ \lambda & 1 & & 0 \\ & \ddots & \ddots&\\ & & \ddots & 1\\ 0 & & & \lambda }[/mm]
> > mit einem Element [mm]\lambda \in K[/mm]. Zeigen sie, dass V
> > f-unzerlegbar ist.
> >
> > Hinweis: Eine f-invariante Zerlegung von V führt zu einer
> > Zerlegung von [mm]\chi_f[/mm]. Verwenden Sie, dass [mm](f-\lambda \cdot id_V)^n \neq 0[/mm]
> > für jede natürliche Zahl [mm]n < dim(V)[/mm]
> >
> > Ich habe mir dazu
> > folgende Gedanken gemacht:
> > Annahme es gibt eine Zerlegung: Also gibt es [mm]U_1,U_2[/mm]
> mit
> > [mm]f(U_i)\in U_i[/mm] für [mm]i \in \lbrace 1,2\rbrace[/mm].
>
> Du meinst [mm]f(U_i) \subseteq U_i[/mm]. Und es soll offenbar [mm]U_1 \oplus U_2 = V[/mm]
> und [mm]\dim U_1, \dim U_2 > 0[/mm] gelten.
>
> > Dann folgt für
> > das charakteristische Polynom gegeben durch
> > [mm]\chi_f=(-1)^n(T-\lambda)^n[/mm] (mit [mm]n=dim V[/mm]), dass
> > [mm]\chi_f=\chi_{f|U_i}\cdot \chi_{f|U_2}[/mm],
>
> Das erste [mm]U_i[/mm] soll [mm]U_1[/mm] sein oder?
>
> Genau, womit [mm]\chi_{f|U_i}[/mm] jeweils Potenzen von [mm]T - \lambda[/mm]
> sind (bis auf's Vorzeichen).
>
> > da aber [mm](f- \lambda \cdot id_V)^n \neq 0[/mm]
> > für [mm]n < dim V[/mm] gilt [mm]\chi_f=\mu_f[/mm] und somit besitzt das
> > charakteristische Polynom keinen Teiler,
>
> Vorsicht! Das charakteristische Polynom besitzt sehr wohl
> Teiler, etwa [mm](T - \lambda)^i[/mm] mit [mm]1 \le i < n[/mm].
>
> > ergo ist
> > [mm]\chi_f=\chi_{f|U_i}\cdot \chi_{f|U_2}[/mm] ein Widerspruch.
>
> Nein, das ist kein Widerspruch. Du musst genauer
> argumentieren hier!
>
> Das Minimalpolynom von [mm]\chi_f[/mm] ist offenbar der kgV der
> Minimalpolynome von [mm]f|_{U_1}[/mm] und [mm]f|_{U_2}[/mm].
Wie kommt man denn darauf das das Minimalpolynom das kleinste gemeinsame Vielfache der Minimalpolynome von [mm]f|_{U_1}[/mm] und [mm]f|_{U_2}[/mm] ist? Anschaulich ist mir das klar. Sie haben die gleichen Nullstellen und sind minimal, aber steckt da noch mehr dahinter?
Wenn ich diesen Hinweis richtig deute meinst du das die beiden Minimalpolynome die Gestalt [mm](T-\lambda)^i [/mm] und [mm](T-\lambda)^j [/mm] haben mit [mm]i,j
> Diese sind
> jeweils Teiler vom charakteristischem Polynom, welches [mm]\pm (T - \lambda)^i[/mm]
> mit [mm]i < n[/mm] ist. Insbesondere ist der kgV ebenfalls von der
> Form [mm](T - \lambda)^i[/mm] mit [mm]i < n[/mm]. Aber dann muss [mm](f - \lambda \mathrm{id}_V)^i = 0[/mm]
> gelten, was ein Widerspruch zur Voraussetzung ist.
>
> LG Felix
>
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:14 Sa 02.05.2009 | Autor: | felixf |
Hallo!
> > Das Minimalpolynom von [mm]\chi_f[/mm] ist offenbar der kgV der
> > Minimalpolynome von [mm]f|_{U_1}[/mm] und [mm]f|_{U_2}[/mm].
>
> Wie kommt man denn darauf das das Minimalpolynom das
> kleinste gemeinsame Vielfache der Minimalpolynome von
> [mm]f|_{U_1}[/mm] und [mm]f|_{U_2}[/mm] ist? Anschaulich ist mir das klar.
> Sie haben die gleichen Nullstellen und sind minimal, aber
> steckt da noch mehr dahinter?
Also: fuer ein Polynom gilt genau dann $g(f) = 0$, wenn [mm] $g(f|_{U_1}) [/mm] = 0$ und [mm] $g(f|_{U_2}) [/mm] = 0$ gilt. Nun gilt [mm] $g(f|_{U_1}) [/mm] = 0$ genau dann, wenn das Minimalpolynom von [mm] $f|_{U_1}$ [/mm] ein Teiler von $g$ ist. Ebenso fuer das Minimalpolynom von [mm] $f|_{U_2}$.
[/mm]
Das Minimalpolynom von $f$ ist also das (eindeutig bestimmte, normierte) Polynom kleinsten Grades, welches $f$ als Nullstelle hat. Und es muss sowohl durch das Minimalpolynom von [mm] $f|_{U_1}$ [/mm] als auch durch das von [mm] $f|_{U_2}$ [/mm] geteilt werden, und andersherum ist jedes gemeinsame Vielfache der beiden ein Teiler vom Minimalpolynom von $f$. Also ist der kgV der beiden gerade das Minimalpolynom von $f$.
> Wenn ich diesen Hinweis richtig deute meinst du das die
> beiden Minimalpolynome die Gestalt [mm](T-\lambda)^i[/mm] und
> [mm](T-\lambda)^j[/mm] haben mit [mm]i,j
> [mm](T-\lambda)^{max(i,j)}[/mm] und somit nicht 0 sein kann, was die
> Voraussetzung verletzt?
Der kgV kann nicht $(T - [mm] \lambda)^n$ [/mm] sein, da [mm] $\max\{ i, j \} [/mm] < n$ ist (weil $0 < i, j$ und $i + j = n$). Das Minimalpolynom kann eh niemals 0 sein.
Die Voraussetzung impliziert allerdings, dass das Minimalpolynom $(T - [mm] \lambda)^n$ [/mm] sein muss.
LG Felix
|
|
|
|