"Urnenmodell-Formel" Herleitun < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
|
Hallo, ich pauke gerade die beiden Formeln für das "Urnenmodell" - Kombinationen, in meinem Fall "Ziehen mit Zurücklegen ohne Beachtung der Reihenfolge". Mir ist ein Umformungsschritt nicht klar, die Anwendung der Formel oder die Herleitung bisher schon. Wenn jemand das erklärt haben möchte, kann ich helfen
Also, ich fange mal an. Die Endformel lautet:
[mm] \vektor{n \\ s} \* (\bruch{N}{S})^{s} \* (1 - \bruch{N}{S})^{n-s} [/mm]
... und ergab sich nach einem Umformungsschritt aus dieser Formel:
[mm] \bruch{\vektor{n \\ s} \* {S}^{s} \* (N - S)^{n-s}}{N^{n}} [/mm]
Jetzt ist meine Frage, wie genau dieser Umformungsschritt aussieht!
Die offensichtlichste Veränderung ist ja das Wegfallen des Bruches bzw. von [mm] N^{n}, [/mm] bzw. das Auftauchen von N im Nenner der Faktoren der 1. Formel... ihr wisst schon, was ich meine
Aber da bin ich mit meinem Latein auch am Ende. Kann mir einer Weiterhelfen? Nicht einmal Derive vereinfacht beide Formeln auf die gleiche Weise!
Danke schonmal
& ciao
|
|
|
|
Hallo!
> Hallo, ich pauke gerade die beiden Formeln für das
> "Urnenmodell" - Kombinationen, in meinem Fall "Ziehen mit
> Zurücklegen ohne Beachtung der Reihenfolge". Mir ist ein
> Umformungsschritt nicht klar, die Anwendung der Formel oder
> die Herleitung bisher schon. Wenn jemand das erklärt haben
> möchte, kann ich helfen
Da freuen wir uns aber.
> Also, ich fange mal an. Die Endformel lautet:
>
> [mm]\vektor{n \\ s} \* (\bruch{N}{S})^{s} \* (1 - \bruch{N}{S})^{n-s}[/mm]
>
> ... und ergab sich nach einem Umformungsschritt aus dieser
> Formel:
>
> [mm]\bruch{\vektor{n \\ s} \* {S}^{s} \* (N - S)^{n-s}}{N^{n}}[/mm]
>
> Jetzt ist meine Frage, wie genau dieser Umformungsschritt
> aussieht!
> Die offensichtlichste Veränderung ist ja das Wegfallen des
> Bruches bzw. von [mm]N^{n},[/mm] bzw. das Auftauchen von N im Nenner
> der Faktoren der 1. Formel... ihr wisst schon, was ich
> meine
Wahrscheinlich hast du die kompliziertesten Umformungen probiert - dabei müsste es hier eigentlich nur ein bisschen Bruchrechnen und ein bisschen Potenzgesetze sein. Ich fange mal mit dem ersten Term an (wobei ich den Binomialkoeffizient mal komplett weglasse, da ja mit ihm quasi nichts geschieht ):
[mm] \left(\bruch{N}{S}\right)^{s}*(1-\bruch{N}{S})^{n-s} [/mm] = [mm] \bruch{N^s}{S^s}*\left(1-\bruch{N}{S}\right)^{n-s}
[/mm]
das dürfte noch klar sein, oder? Nun kommt die Bruchrechnung dran - erweitern von 1 mit S ergibt [mm] \bruch{S}{S} [/mm] - beides in der Klammer auf einen Nenner gebracht ergibt dann:
[mm] \bruch{N^s}{S^s}*\left(\bruch{S-N}{S}\right)^{n-s} [/mm] = [mm] \bruch{N^s}{S^s}*(S-N)^{n-s}*\bruch{1}{S^{n-s}} [/mm] = [mm] \bruch{N^s}{S^s*S^{n-s}}*(S-N)^{n-s} [/mm] = [mm] \bruch{N^s}{S^n}*(S-N)^{n-s}
[/mm]
(meine Güte, habe ich mich hier oft vertiptt... )
So, und nun weiß ich leider nicht, was S und N sind. Aber für den Fall, dass (n-s) gerade ist, gilt ja sowieso [mm] (S-N)^{n-s}=(N-S)^{n-s}, [/mm] für den Fall, dass (n-s) ungerade ist, müsste man dann evtl. mit der Bedeutung von N und S argumentieren, dass bei meiner Umformung das Gleiche steht, was bei dir rauskommen soll. Aber das überlasse ich dann mal dir. (Oder vielleicht habe ich auch gerade eine andere mathematische Eigenschaft dafür übersehen?)
Viele Grüße
Bastiane
|
|
|
|