VR:Untermenge von Polynomen < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 16:58 Mi 31.10.2007 | Autor: | Sonea |
Aufgabe | V sei die Menge aller Polynome mit reelen Koeffizienten [mm] \le [/mm] 5. Warum ist V ein Untervektorraum aller Polynome? Bestimmen Sie die Dimension von V und geben Sie eine Basis an. |
Diese Aufgabe besteht ja aus zwei Teilfragen, wo ich bei beiden nicht wirklich weiterkomme.
Bei der ersten (Warum ist V ein Untervektorraum aller Polynome?) sagte uns unser Tutor, wir sollen u.a. beweisen, dass 0 ein Element von V, f+g und f*g Element von V sind.
Wenn 0 Element von V sein soll, reicht es dann, zu sagen, dass wenn
[mm] a+b*x+c*x²+d*x^3+e*x^4+f*x^5=0 [/mm] und x=0 das Ergebnis a=0 ist, a Element der reellen Zahlen ist und damit 0 Element von V?
Und was f+g betrifft... der Ansatz dafür wäre ja
[mm] \summe_{i=0}^{5} a_{i}*x^{i} [/mm] + [mm] \summe_{i=0}^{5} b_{i}*x^{i} [/mm] - aber wie geht es dann weiter?
Und kann mir jemand bei f*g Element von V behilfreich sein?
Zur zweiten Frage, hab ich das Problem, dass mein Tutor gerne erläutert hätte, wieso die Basis [mm] {1,x,x²,x³,x^{4},x^{5}} [/mm] erzeugend bzw. lin. unabhängig ist (wobei das eine ja schlußendlich das andere bedingt). Kann mir da jemand einen Tipp geben?
Vielen Dank im vorraus :)
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Hi, Sonea,
> V sei die Menge aller Polynome mit reelen Koeffizienten [mm]\le[/mm]
> 5. Warum ist V ein Untervektorraum aller Polynome?
> Bestimmen Sie die Dimension von V und geben Sie eine Basis an.
> Diese Aufgabe besteht ja aus zwei Teilfragen, wo ich bei
> beiden nicht wirklich weiterkomme.
> Bei der ersten (Warum ist V ein Untervektorraum aller
> Polynome?) sagte uns unser Tutor, wir sollen u.a. beweisen,
> dass 0 ein Element von V, f+g und f*g Element von V sind.
Letzteres stimmt nicht! Es muss lediglich [mm] \lambda*f [/mm] ein Element von V sein!
> Wenn 0 Element von V sein soll, reicht es dann, zu sagen,
> dass wenn
> [mm]a+b*x+c*x²+d*x^3+e*x^4+f*x^5=0[/mm] und x=0 das Ergebnis a=0
> ist, a Element der reellen Zahlen ist und damit 0 Element
> von V?
Nein! Du musst das Nullpolynom, also f(x)=0 als Nullelement wählen.
Und da dieses zur Menge aller Polynome vom Grad HÖCHSTENS (!) 5 gehört, ist der 1. Teil auch schon bewiesen.
Und dass die Summe zweier Polynome vom Grad höchstens 5 auch wieder ein Polynom vom Grad höchstens 5 ergibt, ist ja auch klar - und leicht zu beweisen, ebenso dass die Multiplikation mit einer Konstanten am Grad des Polynom nichts ändert.
> Zur zweiten Frage, hab ich das Problem, dass mein Tutor
> gerne erläutert hätte, wieso die Basis
> [mm]{1,x,x²,x³,x^{4},x^{5}}[/mm] erzeugend bzw. lin. unabhängig ist
> (wobei das eine ja schlußendlich das andere bedingt). Kann
> mir da jemand einen Tipp geben?
"Erzeugend" ist leicht, weil ja offensichtlich jedes Polynom höchstens 5.Grades eine Linearkombinaton dieser 6 Vektoren ist (darum ist die Dimension dieses Vektorraums auch gleich 6):
Nennen wir die Vektoren mal - wie üblich - [mm] e_{1}, e_{2} [/mm] usw.
(also: [mm] e_{1} [/mm] = 1, [mm] e_{2} [/mm] = x, [mm] e_{3} [/mm] = [mm] x^{2}, [/mm] ...),
dann ergibt sich automatisch:
f(x) = a + bx + [mm] cx^{2} [/mm] + .. + [mm] ex^{4} [/mm] + [mm] fx^{5}
[/mm]
= [mm] a*e_{1} [/mm] + [mm] b*e_{2} [/mm] + .. + [mm] e*e_{5} [/mm] + [mm] f*e_{6}.
[/mm]
Naja - und die lineare Unabhängigkeit der 6 Vektoren [mm] e_{1} [/mm] bis [mm] e_{6} [/mm] zeigst Du auf übliche Art und Weise!
mfG!
Zwerglein
|
|
|
|