www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Geraden und Ebenen" - Vektorbestimmung
Vektorbestimmung < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektorbestimmung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:13 Mi 29.02.2012
Autor: twentynine-two

Aufgabe
Bestimme den C-Vektor

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
[http://www.matheboard.de/thread.php?threadid=484729]

Gegeben:
[mm] \vec{a} [/mm] = [mm] \begin{pmatrix} -2\\ 5 \\ -1 \end{pmatrix} [/mm]

[mm] \vec{b} [/mm] = [mm] \begin{pmatrix} 1 \\ -2 \\ 4 \end{pmatrix} [/mm]

[mm] \vec{c} [/mm] = [mm] \begin{pmatrix} x \\ y \\ z \end{pmatrix} [/mm]
Winkel zwischen [mm] \vec{b} [/mm] und [mm] \vec{c} [/mm] -> 70°

[mm] \vec{c} [/mm] ist von [mm] \vec{b} [/mm] 7 Längeneinheiten entfernt

Gesucht ist [mm] \vec{c} [/mm]

Meine Ideen:
Ansatz:
[mm] \sqrt{x^{2}+y^{2}+z^{2}}=7 \frac{\begin{pmatrix} 1 \\ -2 \\ 4\end{pmatrix}*\begin{pmatrix} x \\ y \\ z \end{pmatrix} }{| \begin{pmatrix} 1 \\ -2 \\ 4 \end{pmatrix} |*| \begin{pmatrix} x \\ y \\ z \end{pmatrix} |} [/mm] = [mm] \frac{x-2y+4z}{7\sqrt{21} } [/mm] = 0,3420201433 wegen [mm] \cos(70) [/mm]  

So, weiter komme ich nun leider nicht. Hilfe wäre sehr nett.

        
Bezug
Vektorbestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 01:12 Do 01.03.2012
Autor: leduart

Hallo
die aussage c ist von b 7 Längeneinheiten entfernt, macht keinen sinn, es sei denn man fasst b,c als punkte auf.
Vektoren haben keine Rntfernung. ist das die wörtliche Aufgabe?
wozu ist a da?
das einzige was klar ist ist cos(70)*|b|*|c|=(b*c)
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]