www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Vektoren eine Basis von U bild
Vektoren eine Basis von U bild < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektoren eine Basis von U bild: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:05 Do 08.06.2006
Autor: Roykiller

Aufgabe
Sei U der lineare Teilraum des euklidischen Vektorraumes R4., der durch folgende homogene Gleichung gegeben ist:
x1+x2+x3+x4=0
a)Zeigen Sie, dass die folgenden Vektoren eine Basis von U bilden.
b1= (1,-1,1,-1) b2=(3,1,-1,-3) b3= (3,-1,-1,-1)
b)Berechnen Sie hieraus mit Hilfe des Schmidtschen Orthogonalisierungsverfahrens eine Orthogonalbasis.

Also bitte euch um Rat oder Hilfestellung zur dieser Aufgabe.

Danke im voraus

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Vektoren eine Basis von U bild: Antwort
Status: (Antwort) fertig Status 
Datum: 17:44 Do 08.06.2006
Autor: djmatey

Hallo,
man stellt zunächst fest, dass die drei Vektoren in U liegen, da die Summe ihrer Komponenten jeweils 0 ergibt.
Dann musst Du zeigen, dass b1,b2,b3 linear unabhängig sind, d.h. dass aus
x*b1+y*b2+z*b3=0 schon x=y=z=0 folgt.
Das sollte kein Problem sein, da Du aus dieser Gleichung ja schon ein Gleichungssystem aus 4 Gleichungen mit drei Unbekannten erhältst (einfach b1,b2, b3 in die Gleichung einsetzen und die 4 von x,y,z abhängigen Gleichungen betrachten und ineinander einsetzen).
Jetzt bleibt füra) nur noch zu zeigen, dass b1,b2,b3 ein Erzeugendensystem bilden, d.h. jeder beliebige Vektor aus U als Linearkombination der drei Vektoren b1,b2,b3 dargestellt werden kann, also zu zeigen ist, dass x,y,z existieren mit
[mm] \vektor{x_{1}\\x_{2}\\x_{3}\\x_{4}} [/mm] = x*b1+y*b2+z*b3,
wobei [mm] x_{1}+x_{2}+x_{3}+x_{4}=0 [/mm] ist.

Zu b):
Reine Rechenarbeit - die einzelnen Schritte des Orthogonalisierungsverfahrens bzw. Orthonormalisierungsverfahrens kannst Du z.B. auf
http://www-ifm.math.uni-hannover.de/~ebeling/LA-B/LAB110602.pdf
nachlesen.

LG Matthias.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]