www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Vektoren und GLS
Vektoren und GLS < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektoren und GLS: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:59 Sa 17.01.2009
Autor: namono

Aufgabe
Zu den Vektoren a(1,-2,3) und b(2,3,1) bestimme man zwei Vektoren x und y mit folgenden Eigenschaften:  x parallel b; y senkrecht auf b; es gilt x+y=a !

Hallo Leute! Leider finde ich keinen Ansatz die Aufgabe zu lösen, darum bitte ich um eure Hilfe. Wird das in einem Gleichungssystem enden? Aber wie - ich finde keinen Ansatz. Vielen Dank im vorraus...


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Vektoren und GLS: Hinweise
Status: (Antwort) fertig Status 
Datum: 16:09 Sa 17.01.2009
Autor: Loddar

Hallo namono,

[willkommenmr] !!


Aus den Bedingungen der Aufgabenstellung gilt:
[mm] $$\vec{x}+\vec{y} [/mm] \ = \ [mm] \vec{a} [/mm] \ \ \ [mm] \gdw [/mm] \ \ \ [mm] \vec{y} [/mm] \ = \ [mm] \vec{a}-\vec{x} [/mm] \ = \ [mm] \vektor{1\\-2\\3}-\vec{x}$$ [/mm]
[mm] $$\vec{y}\perp\vec{b} [/mm] \ \ \ [mm] \gdw [/mm] \ \ \ [mm] \vec{b}*\vec{y} [/mm] \ = \ [mm] \vektor{2\\3\\1}*\vec{x} [/mm] \ = \ 0$$
[mm] $$\vec{x}\parallel\vec{a} [/mm] \ \ \ [mm] \gdw [/mm] \ \ \ [mm] \vec{x} [/mm] \ = \ [mm] k*\vec{a} [/mm] \ = \ [mm] k*\vektor{1\\-2\\3}$$ [/mm]

Gruß
Loddar


Bezug
                
Bezug
Vektoren und GLS: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 20:32 Sa 17.01.2009
Autor: namono

Danke für die schnelle Antwort. Hast du da etwas verwechselt (die Wechselstaben verbucht ;-) )? Oder ist das dein Plan? Aus der Aufgabenstellung erfährt man:

x + y = a  [mm] \gdw [/mm]  y = a - x
x [mm] \parallel [/mm] b  [mm] \gdw [/mm]  x = k * b
y [mm] \perp [/mm] b  [mm] \gdw [/mm]  0 = y * b

Sollte so dein Ansatz aussehen? Ok aber wie gehts weiter? Wenn ich:
x=k*b in y=a-x einsetze was mache ich dann mit der letzten Gleichung? Kann es sein das das garnicht so kompliziert ist und ich Tomaten auf den Augen habe??

Gruß



Bezug
                        
Bezug
Vektoren und GLS: editiert
Status: (Antwort) fertig Status 
Datum: 20:41 Sa 17.01.2009
Autor: angela.h.b.


> Danke für die schnelle Antwort. Hast du da etwas
> verwechselt (die Wechselstaben verbucht ;-) )? Oder ist das
> dein Plan? Aus der Aufgabenstellung erfährt man:
>  
> x + y = a  [mm]\gdw[/mm]  y = a - x
>  x [mm]\parallel[/mm] b  [mm]\gdw[/mm]  x = k * b
>  y [mm]\perp[/mm] b  [mm]\gdw[/mm]  0 = y * b
>  
> Sollte so dein Ansatz aussehen?

Hallo,

[willkommenmr].

Ich denke schon daß das so geplant war.

Du könntest nun doch einfach mit den Koordinaten weitermachen.

EDIT. Beachte unbedingt des reverens Hinweis, er spart Dir viel Zeit und Mühe.

Gruß v. Angela

Bezug
                                
Bezug
Vektoren und GLS: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:51 Sa 17.01.2009
Autor: reverend

Hallo namono,

welche Bachstuben?

Wenn Du schon die zweite Gleichung in die erste einsetzt, dann könntest Du die dann gewonnene Aussage ja gleich in die dritte Gleichung einsetzen, dann hast Du da lauter bekannte Größen und eine unbekannte, k.

Die muss dann alle drei Koordinatengleichungen erfüllen.

Na dann,
reverend

Bezug
                                        
Bezug
Vektoren und GLS: Klick hats gemacht...
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:31 So 18.01.2009
Autor: namono

Aaasoo! Naja ganz meinem Physik Prof. der immer sagt: "Gesuchte Werte durch gegebene ersetzen!" Also doch nicht so schwierig! Somit ist:

y=a-k*b  [mm] \to [/mm]  einsetzen in y*b=0:

0=(a-k*b)*b
0=ab-kbb
k=a/b  [mm] \to [/mm]  k=Betrag von a geteilt durch Betrag von b
k=1

Daraus ergibt sich:

[mm] x=\vektor{2 \\ 3\\1} [/mm]
[mm] y=\vektor{-1 \\ -5\\ 2} [/mm]

Ja, das ist richtig!

Vielen Dank euch allen und noch einen schönen abend!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]