www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Vektorisierung Matrix
Vektorisierung Matrix < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektorisierung Matrix: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 09:48 So 16.04.2017
Autor: Peter_123

Hallo,

Es sei $z$ ein Vektor mit [mm] $\frac{k^2 -k}{2}$ [/mm] Einträgen und $d$ ein Vektor mit $kf - [mm] \frac{f^2 -f}{2}$ [/mm] Einträgen, wobei $f<k$.
$L$ sei eine Matrix mit $k$ Zeilen und $f$- Spalten.

Ich möchte L gerne vektorisieren (sagen wir zu A) sodass

$(z - Ad)$ Sinn macht .... nun dachte ich daran :

$x(i,j)$ soll den Bereich $1 [mm] \le [/mm] i < j [mm] \lek$ [/mm] auf $[1, [mm] \frac{k^2 -k}{2}]$ [/mm] abbilden und $y(i,r)$ den Bereich $1 [mm] \le [/mm] i [mm] \lek$, $1\le [/mm] r [mm] \le [/mm] f$ , $ r [mm] \le [/mm] i$ auf $[1, kf - [mm] \frac{f^2 -f}{2}$ [/mm] , dann ist für $1 [mm] \le [/mm] i < j [mm] \le [/mm] k$ , $r [mm] \le [/mm] min(i,f)$

[mm] $L_{jr} [/mm] = [mm] A_{x(i,j),y(i,r)}$ [/mm]
und
[mm] $L_{ir} [/mm] = [mm] A_{x(i,j),y(j,r)}$ [/mm]

für x(i,j) dachte ich an $x(i,j)= [mm] \frac{(j-2)(j-1)}{2}+i [/mm] $

aber ich finde derweil nix geeignetes für y(i,r)

vielen Dank für eure Hilfe.

LG

        
Bezug
Vektorisierung Matrix: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:20 Di 18.04.2017
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]