Vektorraumaxiome < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 16:41 Do 28.04.2011 | Autor: | noname2k |
Aufgabe | Die Vektoraddition sei gegeben mit:
[mm] \vektor{x_1 \\ x_2\\x_3\\x_4}+\vektor{y_1 \\ y_2\\y_3\\y_4}:=\vektor{x_1y_1+x_2y_3\\x_1y_2+x_2y_4\\x_3y_1+x_4y_3\\x_3y_2+x_4y_4} [/mm] |
Hallo,
ich möchte dafür die Assoziativität zeigen, also [mm] $(\vec{x}+\vec{y})+\vec{z}=\vec{x}+(\vec{y}+\vec{z})$
[/mm]
[mm] $(\vec{x}+\vec{y})+\vec{z}=(\vektor{x_1 \\ x_2\\x_3\\x_4}+\vektor{y_1 \\ y_2\\y_3\\y_4})+\vektor{z_1 \\ z_2\\z_3\\z_4}=\vektor{x_1y_1+x_2y_3\\x_1y_2+x_2y_4\\x_3y_1+x_4y_3\\x_3y_2+x_4y_4}+\vektor{z_1 \\ z_2\\z_3\\z_4}=\vektor{(x_1y_1+x_2y_3)z_1+(x_1y_2+x_2y_4)z_3\\(x_1y_1+x_2y_3)z_2+(x_1y_2+x_2y_4)z_4\\(x_3y_1+x_4y_3)z_1+(x_3y_2+x_4y_4)z_3\\(x_3y_1+x_4y_3)z_2+(x_3y_2+x_4y_4)z_4}
[/mm]
[mm] $=\vektor{x_1y_1z_1+x_2y_3z_1+x_1y_2z_3+x_2y_4z_3\\x_1y_1z_2+x_2y_3z_2+x_1y_2z_4+x_2y_4z_4\\x_3y_1z_1+x_4y_3z_1+x_3y_2z_3+x_4y_4z_3\\x_3y_1z_2+x_4y_3z_2+x_3y_2z_4+x_4y_4z_4}$
[/mm]
[mm] $\vec{x}+(\vec{y}+\vec{z})=\vektor{x_1 \\ x_2\\x_3\\x_4}+(\vektor{y_1 \\ y_2\\y_3\\y_4}+\vektor{z_1 \\ z_2\\z_3\\z_4})=\vektor{x_1 \\ x_2\\x_3\\x_4}+\vektor{y_1z_1+y_2z_3\\y_1z_2+y_2z_4\\y_3z_1+y_4z_3\\y_3z_2+y_4z_4}=\vektor{x_1(y_1z_1+y_2z_3)+x_2(y_3z_1+y_4z_3\\x_1(y_1z_2+y_2z_4)+x_2(y_3z_2+y_4z_4\\x_3(y_1z_1+y_2z_3)+x_4(y_3z_1+y_4z_3\\x_3(y_1z_2+y_2z_4)+x_4(y_3z_2+y_4z_4}$
[/mm]
[mm] $=\vektor{x_1y_1z_1+x_1y_2z_3+x_2y_3z_1+x_2y_4z_3\\x_1y_1z_2+x_1y_2z_4+x_2y_3z_2+x_2y_4z_4\\x_3y_1z_1+x_3y_2z_3+x_4y_3z_1+x_4y_4z_3\\x_3y_1z_2+x_3y_2z_4+x_4y_3z_2+x_4y_4z_4}$
[/mm]
Ist das soweit korrekt oder bin ich da total falsch rangegangen? Fehlen noch irgendwelche Zwischenschritte?
Ich danke schonmal für Eure Hilfe/Tipps.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 16:58 Do 28.04.2011 | Autor: | algieba |
Hi
deine Vorgehensweise ist richtig. Wenn deine beiden Ergebnisse übereinstimmen (was sie auch tun), dann hast du die Assoziativität gezeigt. Ich habe jetzt aber nicht alle Indizes überprüft, aber das dürfte schon alles stimmen.
Also um es kurz zu sagen: Alles richtig
Viele Grüße
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 17:29 Do 28.04.2011 | Autor: | noname2k |
> Hi
>
> deine Vorgehensweise ist richtig. Wenn deine beiden
> Ergebnisse übereinstimmen (was sie auch tun), dann hast du
> die Assoziativität gezeigt. Ich habe jetzt aber nicht alle
> Indizes überprüft, aber das dürfte schon alles stimmen.
>
> Also um es kurz zu sagen: Alles richtig
>
> Viele Grüße
Danke.
Jetzt hab ich noch eine Frage zu einem anderen Axiom dafür.
zu zeigen: [mm] $\alpha(\vec{x}+\vec{y})=\alpha\vec{x}+\alpha\vec{y}$
[/mm]
[mm] $\alpha(\vec{x}+\vec{y})=\alpha(\vektor{x_1\\x_2\\x_3\\x_4}+\vektor{y_1\\y_2\\y_3\\y_4})=\alpha\vektor{x_1y_1+x_2y_3\\x_1y_2+x_2y_4\\x_3y_1+x_4y_3\\x_3y_2+x_4y_4}=\vektor{\alpha(x_1y_1+x_2y_3)\\\alpha(x_1y_2+x_2y_4\\\alpha(x_3y_1+x_4y_3)\\\alpha(x_3y_2+x_4y_4)}$
[/mm]
[mm] $\alpha\vec{x}+\alpha\vec{y}=\alpha\vektor{x_1\\x_2\\x_3\\x_4}+\alpha\vektor{y_1\\y_2\\y_3\\y_4}=\vektor{\alpha x_1\\\alpha x_2\\\alpha x_3\\\alpha x_4}+\vektor{\alpha y_1\\\alpha y_2\\\alpha y_3\\\alpha y_4}=?\vektor{\alpha x_1\alpha y_1+\alpha x_2\alpha y_3\\\vdots}$
[/mm]
Beim letzten Schritt hab ich nur die 1. Zeile hingeschrieben, weil ich mir da nicht sicher bin ob das so korrekt ist.
Muss ich dort die Vorschrift der Vektoraddition benutzen so wie ich es gemacht habe oder ist das falsch? Falls es korrekt ist, dürfte das Axiom ja nicht gelten da beim 2. Ergebnis jeweils ein [mm] \alpha^2 [/mm] entsteht oder?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:06 Do 28.04.2011 | Autor: | Sigrid |
>
> Danke.
> Jetzt hab ich noch eine Frage zu einem anderen Axiom
> dafür.
> zu zeigen:
> [mm]\alpha(\vec{x}+\vec{y})=\alpha\vec{x}+\alpha\vec{y}[/mm]
>
> [mm]\alpha(\vec{x}+\vec{y})=\alpha(\vektor{x_1\\x_2\\x_3\\x_4}+\vektor{y_1\\y_2\\y_3\\y_4})=\alpha\vektor{x_1y_1+x_2y_3\\x_1y_2+x_2y_4\\x_3y_1+x_4y_3\\x_3y_2+x_4y_4}=\vektor{\alpha(x_1y_1+x_2y_3)\\\alpha(x_1y_2+x_2y_4\\\alpha(x_3y_1+x_4y_3)\\\alpha(x_3y_2+x_4y_4)}[/mm]
>
> [mm]\alpha\vec{x}+\alpha\vec{y}=\alpha\vektor{x_1\\x_2\\x_3\\x_4}+\alpha\vektor{y_1\\y_2\\y_3\\y_4}=\vektor{\alpha x_1\\\alpha x_2\\\alpha x_3\\\alpha x_4}+\vektor{\alpha y_1\\\alpha y_2\\\alpha y_3\\\alpha y_4}=?\vektor{\alpha x_1\alpha y_1+\alpha x_2\alpha y_3\\\vdots}[/mm]
>
> Beim letzten Schritt hab ich nur die 1. Zeile
> hingeschrieben, weil ich mir da nicht sicher bin ob das so
> korrekt ist.
> Muss ich dort die Vorschrift der Vektoraddition benutzen
> so wie ich es gemacht habe oder ist das falsch? Falls es
> korrekt ist, dürfte das Axiom ja nicht gelten da beim 2.
> Ergebnis jeweils ein [mm]\alpha^2[/mm] entsteht oder?
Du musst auf jeden Fall die gegebene Definition der Vektoraddition benutzen. Wenn Du für die Multiplikation mit einem Skalar die übliche S- multiplikation im [mm] R_4 [/mm] gegeben hast, ist Deine Rechnung richtig. Du kannst dann einfach ein Gegenbeispiel angeben, um zu zeigen, dass das Distributivgesetz nicht gilt.
Gruß
Sigrid
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 18:44 Do 28.04.2011 | Autor: | noname2k |
Vielen Dank für Eure Hilfe.
|
|
|
|