www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Rationale Funktionen" - Verhalten im Unendlichen
Verhalten im Unendlichen < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verhalten im Unendlichen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 19:11 Do 03.09.2009
Autor: Mervelein

Aufgabe
f(x)= x-1/x+2

Hallo zusammen :),

Habe eine kurze Frage...bin eifrig am HA´s machen und da ist ein problemchen aufgetaucht. ich würde gerne wissen, ob bei der oben gennanten gebrochenen Funktion, wenn x gegen + Unendlich strebt der Grenzwert 0 ist oder 1 ?

Mein Problem liegt darin, dass ich nicht weiß, dass wenn ich den Zähler und Nenner jeweils durch x dividiere, ob x/x als 1 gezählt wird oder ob es sich wegkürzt.
Rechnerisch wird es vllt klarer:
((x/x-1/x)/(x/x)+2/x)) ...Wie gesagt das problem ist nur x/x, ob das jetzt als 1 zählt oder als o, weil es sich gegeneinander kürzt

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


Liebe Grüße Mervelein

        
Bezug
Verhalten im Unendlichen: x/x = 1
Status: (Antwort) fertig Status 
Datum: 19:13 Do 03.09.2009
Autor: Loddar

Hallo Mervelein!


Es gilt wirklich [mm] $\bruch{x}{x} [/mm] \ = \ 1$ (für $x \ [mm] \not= [/mm] \ 0$), so dass bei Deinem Term verbleibt:
$$... \ = \ [mm] \bruch{1-\bruch{1}{x}}{1+\bruch{2}{x}}$$ [/mm]

Gruß
Loddar


Bezug
                
Bezug
Verhalten im Unendlichen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:18 Do 03.09.2009
Autor: Mervelein

Danke für die schnelle antwort :)

Also wäre dann

[mm] \limes_{n\rightarrow\infty} [/mm] f(x)=1 oder?

Bezug
                        
Bezug
Verhalten im Unendlichen: (fast) richtig
Status: (Antwort) fertig Status 
Datum: 19:19 Do 03.09.2009
Autor: Loddar

Hallo Mervelein!


Wenn Du nun noch unterhalb des [mm] $\lim$ [/mm] schreibst [mm] $\red{x}\rightarrow\infty$ [/mm] , stimmt es.


Gruß
Loddar


Bezug
                                
Bezug
Verhalten im Unendlichen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:24 Do 03.09.2009
Autor: Mervelein

:D :D Ja stimmt, aber wusste nicht, wie ich es hier machen sollte, habe nur das eingefügt, was unten möglich war. da war nur das mit n, oder ich habe nur das gesehen. aber danke für den hinweis und für deine antwort.

Liebe grüßeee :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]